

PHP
Game Programming

Matt Rutledge

© 2004 by Premier Press, a division of Course Technology. All rights
reserved. No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopy-
ing, recording, or by any information storage or retrieval system with-
out written permission from Course PTR, except for the inclusion of
brief quotations in a review.

The Premier Press logo and related trade dress are trademarks of Premier
Press and may not be used without written permission.

Paint Shop Pro 8 is a registered trademark of Jasc Software.

PHP Coder is a trademark of phpIDE.

All other trademarks are the property of their respective owners.

Important: Course PTR cannot provide software support. Please contact
the appropriate software manufacturer’s technical support line or Web
site for assistance.

Course PTR and the author have attempted throughout this book to
distinguish proprietary trademarks from descriptive terms by following
the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Course PTR
from sources believed to be reliable. However, because of the possibility
of human or mechanical error by our sources, Course PTR, or others,
the Publisher does not guarantee the accuracy, adequacy, or complete-
ness of any information and is not responsible for any errors or omis-
sions or the results obtained from use of such information. Readers
should be particularly aware of the fact that the Internet is an ever-
changing entity. Some facts may have changed since this book went to
press.

Educational facilities, companies, and organizations interested in multi-
ple copies or licensing of this book should contact the publisher for
quantity discount information. Training manuals, CD-ROMs, and por-
tions of this book are also available individually or can be tailored for
specific needs.

ISBN: 1-59200-153-X
Library of Congress Catalog Card Number: 2004090731
Printed in the United States of America

04 05 06 07 08 BH 10 9 8 7 6 5 4 3 2 1

Course PTR, a division of Course Technology
25 Thomson Place
Boston, MA 02210

http://www.courseptr.com

SVP, Course Professional, Trade,
Reference Group:
Andy Shafran

Publisher:
Stacy L. Hiquet

Senior Marketing Manager:
Sarah O’Donnell

Marketing Manager:
Heather Hurley

Series Editor:
André LaMothe

Manager of Editorial Services:
Heather Talbot

Senior Acquisitions Editor:
Emi Smith

Associate Marketing Manager:
Kristin Eisenzopf

Project Editor and Copy Editor:
Dan Foster, Scribe Tribe

Technical Reviewer:
John Freitas

Retail Market Coordinator:
Sarah Dubois

Interior Layout:
Marian Hartsough

Cover Designer:
Steve Deschene

CD-ROM Producer:
Brandon Penticuff

Indexer:
Kelly Talbot

Proofreader:
Estelle Manticas

To Jenai. Thank you.

Acknowledgments

There are so many people who made this book possible for me. First I would like
to thank André LaMothe for giving me this opportunity. I would also like to
thank my editor, Dan Foster, for all of his hard work. I also need to thank my

company, DATA Inc. (www.datausa.com) for understanding my rigorous schedule. Thank
you to Mike Gesner (President and CEO), Michael Melson (Technical Director), Randy
Chong (Game Design Director), Wesley Potter (Game Designer), and Jonathan Shusta
(Art Director) of Dragonfly Game Design (www.dragonflygamedesign.com) for making
the MMO possible. Without you guys this book wouldn’t have been as cool as it is. I would
also like to thank Jenai for being my constant support and putting up with my odd hours,
odd moods, and general weirdness throughout the creation of this whole book.

iv

About the Author

MATT RUTLEDGE (ruts@datausa.com) is lead developer at DATA, Inc. (www.datausa.com),
a Denver, Colorado-based digital visualization company specializing in 3D computer ani-
mation and Web development. Matt has 7 years of experience in the multimedia world.
He developed several telecommunication applications before moving into the realm of
Web development. Matt specializes in database-driven and interactive online applications.
Matt also actively writes articles for asp101 (www.asp101.com) and the MSDNAA
(www.msdnaa.net).

v

About the Series Editor

ANDRÉ LAMOTHE, CEO, Xtreme Games LLC, has been involved in the computing indus-
try for more than 25 years. He wrote his first game for the TRS-80 and has been hooked
ever since! His experience includes 2D/3D graphics, AI research at NASA, compiler
design, robotics, virtual reality, and telecommunications. His books are top sellers in
the game programming genre, and his experience is echoed in the Premier Press Game
Development books.

vi

Letter from the Series Editor

Over the last half decade or so, a little piece of software called PHP has been gener-
ating a lot of buzz and has quickly risen from a single programmer’s side-project to
the Web programming language. Now in version 5, PHP (a recursive abbreviation
for PHP Hypertext Preprocessor) is practically synonymous with the development
of dynamic Web sites and flexible content. But what few realize is that it’s capable of
a lot more than just making Web sites—in fact, it’s showing serious potential for
making games! With the surge in popularity of Web-based games and applications
like Habbo Hotel, Yahoo’s board, card and puzzle games, and even The Sims, there’s
never been a better time to get involved in online game development. And with PHP,
a completely free tool, it has never been cheaper or easier!

That’s what’s so exciting about PHP Game Programming. Matt Rutledge has taken
the formidable tasks of teaching both game development and the PHP language and
condensed them into one easy-to-read text that makes it all seem effortless. But what
makes this book so special is that it’s not just meant for game developers; anyone
who wants to learn PHP will find that this book teaches it in a fun way that’s far more
engaging than the countless other PHP books on the shelves. After all, making games
is a lot more fun than sorting employee records! But don’t think this book is all about
goofing off. From Chapter 1 on, you get a hardcore PHP education that starts in the
trenches, with everything you need to know about server configuration and setup.
Once you’re locked and loaded, you’ll complete a tour of the language itself, cover-
ing all the major constructs and features. PHP’s syntax is remarkably similar to lan-
guages like C, C++, and Java, and if you’re already familiar with one of those then
this material will be very easy to absorb. Finally, the entire last half of the book is
devoted to serious game programming topics, from graphics to chess algorithms to
dynamic battlefield terrains.

In conclusion, it won’t be long before everything from your shoes to your refrigera-
tor has a connection to the Internet, and online games are certainly leading the way
toward the ultra-connected world of the future. Many programmers find themselves
leaving languages like C or C++ behind in favor of languages with built-in network-
ing capabilities like Java, Perl, and PHP. With a development tool as powerful and
accessible as PHP, this is your chance to turn your online game ideas into a reality!

Sincerely,

André LaMothe
Series Editor, Premier Game Development Series

Contents

Introduction . xiii

Part I Introduction to the World of PHP 1

Chapter 1
 So What Is All This Server Stuff? . 3

Chapter 2
 Waging the Configuration War. 23

Understanding the Client/Server Relationship 3
The Web Server . 5
Sessions and Session Variables . 5
TCP/IP. 13
Installing the IIS Web Server . 14
Installation on Windows 2000/XP Professional 15
Installation on Windows 98 . 17
Installing the Apache Web Server on Windows ME/XP 18
Installing the Apache Web Server on UNIX . 19

The Platforms . 23
Building and Installing PHP on UNIX . 24
Installation on Windows for IIS/Apache . 26
Installing the Windows Extensions . 29
Testing Your Installation . 29

viii

ix Contents

Chapter 3 I Have Conquered the Server, Let Me at the Code! 31
The Basics of the HTML Tag . 31
The Almighty HTML Document. 32
The HTML Body . 33
Graphics and HTML . 36
The File Formats . 37
Using the File Formats in Your Document . 39
Tables . 41
Layouts, Tables, and Graphics . 44
Creating Forms for Input. 48
Conclusion . 51

Part II Enter the Language 53

Chapter 4
 Say Hello to PHP . 55

Chapter 5
 Operators, Statements, and Functions 77

Creating a PHP Page . 56
Data Types . 57
Type Casting . 58
Variable Variables . 58
Constants. 58
Naming Conventions . 59
Functions for Variables . 60
Functions for Strings . 61
printf() and sprintf() . 64
Regular Expressions and Pattern Matching. 66
Using the Regular Expression Functions . 68
Processing Forms with PHP . 71
Conclusion . 76

Operators . 77
Arithmetic Operators . 78
Comparison Operators . 78
Logical Operators . 79
Ternary Operator. 80
Bitwise Operators . 82
Variable Assignment Shortcuts . 85
Operation Precedence. 86

x Contents

Statements . 86
if Statements . 88
The switch Statement . 90
while and do…while Loops . 93
The for Loop . 94
Functions . 94
Passing Parameters to a Function . 95
Recursion. 98
The Magic of Including Files . 99
Conclusion . 100

Part III Arrays, Games, and Graphics 101

Chapter 6
 Arrays! . 103

Chapter 7
 Playing with Chess and Databases 133

Initializing Arrays . 104
Using Strings for Indexes. 105
Looping through Sequential Arrays . 106
Looping through Non-Sequential Arrays . 108
Multi-Dimensional Arrays . 110
Sorting Arrays . 112
Your First PHP Game . 117
Conclusion . 132

Non-Relational Databases . 134
Creating and Opening a Database . 134
Looping through the Database . 136
Inserting an Entry into Your Database . 137
Updating an Entry in Your Database . 139
Deleting an Entry from Your Database . 140
Chess Programming: A Quick Overview . 140
Starting the Chess Game . 141
Working with the Pieces . 143
Getting the User Input and Modifying the Database 151
Conclusion . 156

xi Contents

Chapter 8 GD Graphics Overview . 157
What Is GD?. 157
Installing GD . 158
Creating and Using a New Image . 160
How to Use Colors . 161
Allocating Colors to an Image . 161
Filling the Image . 162
Setting Your Transparent Color. 163
Converting a True-Color Image to a Palette Image 165
Counting Colors in an Image . 165
Retrieving a Color at a Point. 166
Drawing Basic Shapes on Your Empty Canvas. 167
Pixels and Lines . 167
From Lines to Rectangles . 169
From Rectangles to Polygons . 172
From Polygons to Arcs and Ellipses . 174
Creating Images with Text. 179
Saving Your Images . 184
Using Existing Images . 185
Conclusion . 192

Chapter 9 Creating Battle Tank and Using Dynamic Terrain 193
Planning Battle Tank . 193
Creating the Graphics . 195
Creating the Game Logic. 196
Creating Dynamic Terrain . 205
Conclusion . 209

Part IV Extras and Final Projects 211

Chapter 10 PHP and Sockets . 213
Socket Basics . 213
Creating a Server. 220
Creating the Client . 223
Integrating Sockets with Battle Tank . 224
Conclusion . 228

xii Contents

Chapter 11 Kiddy Cartel—Creating Your Own MMO 229
Installing mySQL . 230
Relational Databases: A Quick Rundown . 231
Kiddy Cartel: The Rules and Specifications . 233
Creating Your Base Actions . 235
Creating a Command with Sub-Commands 240
Creating a Command without Sub-Commands. 245
Look at All the Commands…Now What? . 248
Conclusion . 256

Chapter 12 Building Your PHP Skills . 257
PHP and Ming . 257
How to Create a Flash Movie . 259
Drawing to Your Flash Movie . 262
Filling Objects with Ming . 265
Adding Animation to Your Flash Movie . 271
Adding ActionScript to Your Flash Piece . 275
Conclusion . 279

Part V Appendixes . 281

Appendix A
 HTML Language Reference . 283

. 309

. 329

Appendix B
 PHP Language Reference

Appendix C
 Support—Debugging Applications

Appendix D
 GD SDK Language Reference . 341

Syntax Errors . 329
Semantic Errors . 331
Logic Errors . 332
PHP and Error Reporting . 333
Handling Errors . 334
Application and Installation Problems . 335

Index . 344

Introduction

Over the past few years the World Wide Web has grown tremendously. From its
infant stages when a Web page was nothing more than text with HTML to
dynamic, robust, extensible, rich multimedia content. Five years ago you would

never have thought of playing a game on the Web, but today, with current scripting lan-
guages, you can do just that. PHP has transformed the Web as we know it. PHP provides
quick, dynamic, real-time tools to bring life to Web sites.

PHP (otherwise known as the hypertext preprocessor) burst onto the scene in 1994 when
Rasmus Lendorf released a package of “Personal Home Page” tools to the public. As more
interest for these tools grew, Rasmus decided to create his own scripting engine to parse
input from an HTML form. The first version of PHP was born; it was called PHP/FI.

The programming community quickly grew out of PHP/FI, and PHP soon became the
API as you know it today. If you know C/C++ or Java then learning the basic PHP con-
structs will be extremely easy.

PHP is a wonderful tool with quick, on-the-fly, compilation. It also offers you a ton of
libraries to work with to create graphics, Flash pieces, connections to databases, and con-
nections to other computers.

The main focus of this book is to take all of these tools and give you the knowledge and
power to create turn-based games on the Web.

xiii

xiv Introduction

Why PHP?
You might ask, why PHP? What is the difference between PHP and another embedded
scripting language such as ASP? The main difference between these languages is obviously
syntax. But beyond that PHP offers you tons of libraries, all for free. The interpretation of
code is faster than ASP, and connecting to a database requires only two to three lines of
code. The best part of PHP is that it is an object-oriented language, which inherently gives
you a great deal of flexibility in your games.

Who Should Read This Book?
This book is for anyone who wants to implement any Web-based games. An understand-
ing of HTML would be helpful. I have included, however, a section dedicated to teaching
you some basics of HTML. Knowledge of your operating system will be helpful too. Since
PHP is a cross-platform language I can cover only so much in the way of installing PHP.
If something goes wrong during installation it will help if you know your operating sys-
tem. This book is not for someone with advanced PHP skills.

What’s On the CD?
■ All the source code in the book

■ The PHP installer for Windows and UNIX

■ PHP libraries

■ Evaluation edition of Jasc Paint Shop Pro 8

■ ST Software’s PHP Integrated Development Environment

■ MySQL 4.0

How This Book Is Organized
I intended this book to be read in sequential order. If you are a beginner and this is your first
exposure to PHP I suggest that you read the book in this manner. However, if you already
have a knowledge of PHP you can feel free to skip around from chapter to chapter.

This book is broken into four main parts. The first part of this book walks you through
setting up PHP and your Web server. The second part introduces you to PHP itself. In the
third part of this book you start creating your very own PHP Web-based games. In the
fourth part of this book you take a look at all of the cool stuff PHP can do.

Remember that all of the code that is shown in this book is provided for you on the
included CD. There are also several applications included on the CD to help you develop
your PHP games.

xv Introduction

■	 Chapter 1—So What Is All This Server Stuff?. This chapter gives you an overview
of server architecture and how the Web works generally. You will also learn how to
install an IIS server and an Apache Web server.

■	 Chapter 2—Waging the Configuration War. After you have installed your Web
server, this chapter will walk you through the steps of installing the PHP CGI
Interpreter. This chapter will also show you some of the basics for configuring
PHP.

■	 Chapter 3—I Have Conquered the Server, Let Me at the Code! This chapter will
teach you the basics of HTML. It also includes a brief explanation of how images
work in the World Wide Web.

■	 Chapter 4—Say Hello to PHP. This chapter introduces you to the PHP language
itself. You will learn the basic points of PHP, such as how to create a PHP page,
how to declare variables in PHP, and how to use regular expressions.

■	 Chapter 5—Operators, Statements, and Functions. In this chapter you will learn
about arithmetic, logic, and bitwise operators. You will also learn how to create
logic statements and functions.

■	 Chapter 6—Arrays! This chapter will teach you how to allocate and use arrays
in PHP. After you have learned all the finer points of arrays you will create your
first game.

■	 Chapter 7—Playing with Chess and Databases. In this chapter you will learn
about non-relational databases. You will also create a simple chess game that uses a
non-relational database to keep track of moves.

■	 Chapter 8—GD Graphics Overview. This chapter introduces Boutell’s GD graph-
ics library. You will learn how to create graphics, manipulate graphics, and add
dynamic text to your graphics.

■	 Chapter 9—Creating Battle Tank and Using Dynamic Terrain. In this chapter you
will first create a Scorched Earth game remake called Battle Tank. After you have
created the initial game you will add dynamic terrain.

■	 Chapter 10—PHP and Sockets. This chapter introduces you to socket program-
ming with PHP. It describes how to send and receive data through sockets.

■	 Chapter 11—Kiddy Cartel—Creating Your Own MMO. Here you will create your
very own MMO game. In this game you will control your own neighborhood. It’s
basically like kids meet mafia.

xvi Introduction

■	 Chapter 12—Building Your PHP Skills. In this final chapter you will take a look at
additional applications for PHP, such as using Ming to create dynamic Flash
movies.

■	 Appendix A—HTML Language Reference

■	 Appendix B—PHP Language Reference

■	 Appendix C—Support—Debugging Applications

■	 Appendix D—GD SDK Language Reference

Introduction
to the World

of PHP
Chapter 1

So What Is All This Server Stuff? .3

Chapter 2
Waging the Configuration War .23

Chapter 3
I Have Conquered the Server, Let Me at the Code! 31

PART I

This page intentionally left blank

chapter 1

So What Is All
This Server Stuff?

■ How the Client/Server Relationship Works

■ The Web Server

■ Sessions and Session Variables

■ TCP/IP

■ Installing the IIS Web Server

■ Installing the Apache Web Server on Windows

■ Installing the Apache Web Server on UNIX

Before getting to the configuration and installation of PHP, it is important to know
how a Web server and Web browser work together. Accordingly, this chapter will
cover some basic server architecture and discuss some points that will change the

way you design your applications. If you feel like you already know these concepts, you
may wish to skip this section and move on to the section on installation.

Understanding the Client/Server Relationship
When you talk about viewing a PHP page, you are referring to a Web page. When you go
to a Web page a series of events occur. These events start at the client with the request, go
to a server to get the page, and end back at the client for viewing. Take a look at these
events as listed below, and depicted in Figure 1.1.

1. The client computer connects to the Internet.

2. The client opens a Web browser.

3

4 Chapter 1 ■ So What Is All This Server Stuff?

3. The client requests a page from a Web site. When you do this, a message is sent
over the Internet to a name server, and the name server then directs you to the
server that hosts the Web page.

4. The server that hosts the Web page receives your request and retrieves the

requested page.

5. If the page is a scripted page, such as a PHP page, the server compiles the page
through a just-in-time compiler that generates HTML.

6. The server then transmits the completed HTML back to the client (the browser).

7. The Web browser receives the HTML and displays an interpretation of the page.

All of that is fairly straightforward; it’s almost like magic. There is only one catch—from
browser to browser, your Web pages are not displayed identically. That is why we say the
browser interprets the page. For instance, when Internet Explorer receives a page that
includes nested tables, both with heights of 100%, Internet Explorer interprets the height
of the inner table relative to the height of the outer table. However, in Netscape Naviga-
tor, the browser will make both the inner and the outer table the height of the browser
window. This poses a problem if you want a page to look the same in multiple browsers.
It gets worse when you switch between OS platforms. Let’s say you have a page of text, and
for some reason the text determines the layout of the page, and you get it looking perfect
on a Windows platform. When you then view the page on a Macintosh, the font is

Request Received

Reqest Page
HTML Received

The Internet Web Server Page Sent

Web Client/Browser

Figure 1.1 The client/server process.

5 Sessions and Session Variables

rendered very differently. The kerning (the space between characters) and the leading (the
space between lines) is totally different. In fact, the font itself might be changed to a dif-
ferent font altogether. Style sheets can mitigate some of these problems, but you’ll still run
into layout issues. The point is that what the browser displays is not a photograph, so if
you want your games to work on several different browsers you have to be careful about
the types of elements (text and graphics) you use.

The Web Server
Now that you have a general understanding of how a client/server relationship works you
can take a closer look at the heart of the beast: the Web server itself.

A Web server runs what is called an HTTP daemon. This daemon handles all of the
requests received on a particular port. The HTTP daemon will listen to two ports—port
80 and port 443. Port 80 is the general Web port (http://). Port 443 is the standard for
secure socket (https://). A Web server is also said to be stateless. That is to say, no perma-
nent connection is maintained between the client and the server. This is extremely impor-
tant to understand. It will make debugging or solving certain problems much easier, and,
more important, this concept will completely change the way you design your games. It
won’t be as easy as making a library of functions or a simple engine and calling functions.
You will need to develop a way to keep state.

Think about that for a minute. What does that really mean? Well, it means that every time
a particular event happens in your PHP game—e.g., the user enters coordinates and clicks
the fire button—the Web browser will reopen the connection to the server, resend the
request to the server, and the server will then process the page and send it back. Now you
need to reload all of your variables/states and update the page appropriately. Otherwise
the whole game would start over, and that would be no fun. Don’t get me wrong—there
are some client-side scripting languages, such as JavaScript, that you can use for client-
side event processing. However, that is beyond the scope of this book, which focuses on
how to make games with PHP. So how exactly do you do this?

Sessions and Session Variables
To keep state you need to utilize session variables. Every time you hit a Web site you start
a session, and this session is identified by a unique GUID (Globally Unique Identifier). A
session is defined as the period of time during which a unique user interacts with a Web
application. As the programmer, you can store variables in this session. This is an
extremely useful tool. You don’t have to keep track of each individual user and his state;
you just have to reference the session. I’ll discuss how to reference sessions later on.

6 Chapter 1 ■ So What Is All This Server Stuff?

When working with sessions there are some important things to remember. If you have a
server farm running, a user’s session does not follow him as he moves from server to
server. In other words, a session is only valid on a single server. The session is process
dependent. This means that if your Web server needs to be restarted and there are current
sessions active, then the sessions will be lost. One unique feature of sessions in PHP is that
they are not cookie dependent. So if a client does not accept HTTP cookies, the client can
still take advantage of sessions.

There are currently two methods supported for passing sessions in PHP4:

■ Cookies

■ URL Parameter

Cookies are of course the preferred method, but since they are not always available you
can pass the session id along the query string as a URL parameter. Here is an example of
how you might pass the session id along the query string in PHP.

<?php

if(!session_is_registered(‘nCount’))

{

session_register(‘nCount’);

$nCount = 1;

}

else

{

$nCount++;

}

?>

<p>Hello, you have seen this page <?php echo $nCount; ?> times.</p>

<p>To continue, <a href=”somepage.php?<?php echo strip_tags(SID)?>”>click here (sompage.php?<?php

echo strip_tags(SID)?>)</p>

In this example we check to see if the session variable nCount is registered. If it is not regis-
tered we register it and initialize it. Otherwise we add 1 to the count and display our mes-
sage to the user. The output of this page might look something like you see in Figure 1.2.

N o t e

Non-relative URLs are assumed to point to external sites and don’t append the sid as it would be
a security risk.

7 Sessions and Session Variables

Figure 1.2 An example output of passing a session id.

That long number at the end of the link, ada6906d1e4bf2d0c753f91edc585b80, is the ses-
sion id. PHP stores these sessions in the sessiondata folder, usually C:\PHP\sessiondata. If
you look in this folder you will see files that start with sess_ and end with a long GUID
like the one on the end of the URL. This is how PHP itself keeps track of the session data.
When you start debugging you will probably reference this folder quite often because you
can open up these files and see if the session variables you set are being stored. If they are
not being stored then you will need to check your php.ini file to make sure sessions are
enabled.

Now that you have a general knowledge of how sessions in PHP work, take a look at the
configuration options available to you and what each one of them means. There are 21
configurable options for sessions in PHP (see Table 1.1) and each one of these behaviors
is configurable in the php.ini file.

All of these options, except user_trans_sid, can be set anywhere using the ini_set()

function.

8 Chapter 1 ■ So What Is All This Server Stuff?

Session Configuration Options

Option Name

save_path “/tmp”

name “PHPSESSID”

save_handler “files”

auto_start 0

serialize_handler “php”

gc_probability 1

gc_dividend 100

gc_maxlifetime 1440

cookie_path “/”

cookie_domain “”

cookie_secure “”

use_cookies 1

use_only_cookies 0

cookie_lifetime 0

referer_check “”

entropy_file “”

entropy_length 0

cache_limiter “nocache”

cache_expire 180

user_trans_sid 0

url_rewriter.tags “a=href,area=href,frame=src,input=src,form=fakeentry”

Table 1.1

Default Value

Here is an overview of each of these configurable session options.

session.save_handler

session.save_handler defines the name of the handler that is used for the sessions
data management.

session.save_path

session.save_path This is where the sessions are stored if session.save_handler is set
to files. There is an optional N argument to this option that determines the num-
ber of directory levels that your sessions will be stored across. For example, setting
the save_path option to 5;./temp, where 5 is the optional argument, will result in a
directory structure something like this:

./tmp/5/c/4/e/1/sess_ ada6906d1e4bf2d0c753f91edc585b80.

9 Sessions and Session Variables

If the N argument is used you must create the directory structure yourself. Also, if
you do use the N argument you must surround the session.save_path in quotes
because the semicolon is also used for comments in the php.ini file. For our pur-
poses, I do not recommend using this option.

session.name

session.name specifies the name of the session that is used to reference the sessionid
in cookies. This should only take alphanumeric characters.

session.auto_start

session.auto_start specifies if the session module should start automatically. If you
do use session.auto_start then you cannot put objects into your sessions because
the class definition must be loaded before starting the session.

session.serialize_handler

session.serialize_handler is the name of the handler which is used to serialize or
deserialize data in the session. Currently only the internal formats “php” and
“WDDX” are valid. WDDX is also available only if PHP is compiled with WDDX
support.

session.gc_probability and session.gc_dividend

session.gc_probability specifies the probability when the garbage collection process
should start. This is calculated by using gc_probability/gc_dividend.

session.gc_maxlifetime

session.gc_maxlifetime is the number of seconds at which the session data is seen as
garbage and cleaned up.

session.cookie_path

session.cookie_path is the path for which the cookie is valid.

session.cookie_domain

session.cookie_domain is the domain for which the cookie is valid.

session.cookie_secure

session.cookie_secure tells the cookies whether they should be sent over secure con-
nections only.

session.use_cookies

session.use_cookies specifies if the session module should store session ids on the
client side.

10 Chapter 1 ■ So What Is All This Server Stuff?

session.use_only_cookies

session.use_only_cookies tells the session module that it should only use cookies to
store the session ids. This prevents attacks from session variables being passed
along the URL.

session.cookie_lifetime

session.cookie_lifetime specifies the lifetime of the cookie in seconds. The default
value 0 means wait until the browser is closed to expire the cookie.

session.referer_check

session.referer_check contains a string for which you want to check each HTTP
referer. If PHP does not find this substring, the embedded session id will be
marked as invalid.

session.entropy_file

session.entropy_file gives a path to an external file that will be used as an addition
in creating the session id. The external file will contribute to the randomness in the
session creation.

session.entropy_length

session.entropy_length specifies the number of bytes which will be read from the
session.entropy_file variable. When set to its default value of 0, it disables the
entropy options.

session.cache_limiter

session.cache_limiter specifies the cache control method to use. Valid options for
this are none, nocache, private, private_no_expire, and public.

session.cache_expire

session.cache_expire is the time to live for cached session pages in minutes. This
option has no effect if session.cache_limiter is set to nocache.

session.user_trans_sid

session.user_trans_sid specifies whether or not transparent sid support is enabled.

url_rewriter.tags

url_rewriter.tags specifies what HTML tags should be rewritten to include the ses-
sion id if session.user_trans_sid is set to 1.

Wow, there are a lot of configuration options for sessions. PHP is very unique and cus-
tomizable. You do not have to specify all of these options in the php.ini file; as a matter of
fact, PHP gives you several functions that expose these options to your code. So, if you
need to change any of these in particular applications you can call on the functions listed
in Table 1.2.

11 Sessions and Session Variables

Session Functions

Function Name Arguments Description

session_cache_expire [int new_cache_expire]

session.cache_expire is replaced with

session_cache_limiter [string cache_limiter] returns the name of the current setting for

session_decode

session_encode void returns an encoded string with the contents of the
current session.

session_destroy void destroys the current session and any data associated
with the current session.

session_get_cookie_params void returns an array with the current sessions cookie

session_id

must call this before session_start().

session_is_registered

session_module_name

instead.

session_name [string name]
specified it sets the name of the current session.

session_regenerate_id void will regenerate the session id and replace the current
session id with the newly generated session id.

session_register]
arguments can be a string holding the name of a

that name in the current session.

session_save_path [string path] returns the path of the current directory where

current path is replaced with path.

session_set_cookie_params int lifetime [,string path]
[,string domain]

Table 1.2

returns the current setting for session.cache_expire.
If new_cache_expire is specified, the current

new_cache_expire.

session.cache_limiter. If cache_limiter is specified, the
name of session.cache_limiter is set to cache_limiter.

string val decodes the session data in the variable val.

information. The array contains the following items:
lifetime, path, domain, and secure.

[string val] returns the current session id. If val is specified it will
replace the current session id. If val is specified you

string val returns true if there is a global variable with a
name specified in val.

[string val] returns the name of the current session module.
If val is specified, that module will be used

returns the name of the current session. If name is

mixed name [, mixed … accepts a variable number of arguments; any of these

variable or an array consisting of variable names or
other arrays. For each of the names specified,
session_register() will register a global variable with

sessions are being stored. If path is specified, the

sets the cookie parameters, lifetime, path, domain,
and secure.

[, bool secure]

12 Chapter 1 ■ So What Is All This Server Stuff?

Session Functions (continued)

Function Name Arguments Description

session_set_save_handler sets the session storage functions used for storing and

session_start void
is all based on the current session id.

session_unregister

session_unset void
session_write_close void this will end the current session and store the session

Table 1.2

string open, string close,
string read, string write, retrieving data. You would use this when you wanted
string destroy, string gc to create your own session handling functions.

creates a session or resumes the current session. This

string var unregisters global variables with the name specified
in var.

this frees all session variables currently registered.

data. You do not need to explicitly call this function.

I know that you are saying to yourself, “What the hell am I supposed to do with all of
this?” To tell you the truth, you won’t use half of these functions for what you will be
doing. Just because you won’t use them in the examples does not mean that you won’t use
them in some of your games. As for the functions you will use, here is an example PHP
script that sets some session variables. Do not worry about the syntax of all the code right
now; I’ll cover that in Chapter 4. For now, just look at how I am using the functions listed
in Table 1.2.

<?php

// use $_SESSION instead of session_register due to security issues

session_start();

$turn = $_SESSION[‘turn’];

if(!isset($turn))

{

$turn = 1;

$_SESSION[‘turn’] = $turn;

}

printf(“Current turn value: “ + $_SESSION[‘turn’]);

unset($turn);

session_destroy();

?>

Now take a look and see what this small example is doing. First you start the session using
session_start(). Then you attempt to get a variable named turn back from the session. If
the variable $turn is not set then you have not yet actually started the session and you need

TCP/IP 13

to initialize the variable. After you initialize the variable, it sets the session variable turn to
whatever is in the variable $turn. Then, the current value is printed, the variable is unset,
and the session is destroyed.

Do not worry if you aren’t comfortable with all of this yet. You will be using sessions in
all the projects in this book, so it will make more sense when you see sessions being used
in an actual context.

If you’re feeling a bit overwhelmed this would probably be a good time to take a break. If
you’re ready for more, continue with the discussion of how the Web server talks to the
client with TCP/IP. After that, you will install and configure an IIS (Internet Information
Server) Web server and an Apache Web server.

TCP/IP
TCP/IP (Transmission Control Protocol/Internet Protocol) is simply a communications
protocol that computers use to talk to each other. What do the different components of
TCP/IP do?

■	 TCP. This is responsible for verifying the correct delivery of data from a client to a
server, or a server to a client. TCP has built-in error checking and will trigger
transmissions until the data has successfully reached its destination.

■	 IP. This is responsible for moving packets of data from node to node. IP forwards
these packets based on a four-byte destination address (IP Address).

Just like every other communications protocol, TCP/IP is constructed of layers; however,
each of the layers in TCP/IP is logical instead of physical. All network traffic moves
through these layers as they travel through the hardware. Here are the layers and a little
bit of information about each.

■	 Application Layer. This layer handles everything that is not TCP/IP. The Web

browser, in our case, is the application layer.

■	 Transport Layer. This layer handles all the routing and delivery of data. This layer
also includes the error control and sequence checking.

■	 Internet Layer. This is the layer responsible for data addressing, transmission,

packet fragmentation, and packet reassembly.

■	 Network Access Layer. This layer handles the transmission of the data across the
network, including determining how to access the hardware.

How does all this work? Before sending data across the network, TCP/IP establishes a con-
nection with the destination machine by sending what we call management packets. After
TCP/IP establishes this connection, data can be sent freely. Once the application that was
using TCP/IP to send data is finished transmitting, it sends more management packets to
the client machine to tell it to close the connection. TCP/IP also controls the flow rate of

14 Chapter 1 ■ So What Is All This Server Stuff?

the data to achieve the maximum data exchange rate, while avoiding congestion and
packet loss. TCP/IP also attempts to pack as much data into a packet as possible.

To sustain an acceptable data transfer rate while avoiding network overload, TCP/IP contains
four algorithms: Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery.

The Slow Start algorithm avoids injecting multiple segments into the network during the
transmission. The reason for this is if there are routers and slower links between the
sender and the receiver you start to lose packets and you slow down your connection. So
the Slow Start algorithm enables TCP/IP to only send data at the rate which the acknowl-
edgments are returned.

The Congestion Avoidance algorithm does what the name says—it avoids congestion.
Network congestion usually occurs when a large amount of data is sent out of a larger
pipe and received on a smaller pipe. Congestion can also occur when multiple streams of
data arrive at a router whose output capacity is less then the sum of the inputs.

The Fast Retransmit algorithm is triggered when the receiving end sends a duplicate
acknowledgment. This occurs when an out-of-order segment is received, a duplicate ACK
is received, or a packet is lost. When this occurs, TCP/IP will retransmit the packet that
was excepted.

The Fast Recovery algorithm is triggered after the Fast Retransmit sends the missing
packet segment. This allows TCP/IP to recover from the missing segment while still avoid-
ing network congestion. If fast recovery was not available, the user might see a significant
decrease in data transmission.

Now that you know how TCP/IP works, you are set with the knowledge you need to con-
tinue the march. The next step is to install the Web server. Following are installation walk-
throughs for IIS and Apache.

Installing the IIS Web Server
IIS (Internet Information Server) is included with the Windows 2000 installation disk.
PWS (Personal Web Server), a trimmed down version of IIS, is available with the Win-
dows 98 installation disk. The differences between IIS and PWS are relatively small; the
biggest differences are:

■ PWS cannot host multiple Web sites on a single machine.

■ PWS cannot log to an ODBC compliant database.

■ PWS cannot restrict access by IP address.

■ PWS cannot perform indexing.

■ PWS cannot isolate processes.

15 Installing the IIS Web Server

Fortunately for us, none of this affects our development. Basically, PWS is not intended to
be a production server. So if you want to run your own Web sites beyond just develop-
ment you will need to install IIS.

C a u t i o n

IIS/PWS is not supported on Windows ME or Windows XP Home Edition, so you will need to install
Apache Web Server for Windows.

Before you install IIS, if there are any other Web servers running on your machine you will
need to uninstall them. If IIS or PWS is already installed on your machine, please skip to
Chapter 2 to set up PHP.

Installation on Windows 2000/XP Professional
IIS/PWS, which I will just refer to as IIS from here on, is a Windows component, so you
will need to have your Windows installation disk ready. To start the installation, click on
Start>Settings>Control Panel, and double-click on the Add/Remove Programs icon as
shown in Figure 1.3.

Figure 1.3 The Windows Control Panel.

16 Chapter 1 ■ So What Is All This Server Stuff?

C a u t i o n

Your Control Panel may differ from that in Figure 1.3.

Now click on the Windows Component Tab (if you are using Windows XP click on the
Add/Remove Windows Components button) on the left-hand side and scroll down until
you see Internet Information Services (IIS). Click on Internet Information Services (IIS),
then click the Details button in the lower right corner of the window. You should see a
screen that looks similar to Figure 1.4.

Now you can select the components you want to install with IIS. By default, Common
Files, Internet Information Services Snap-In, Personal Web Manager, and World Wide
Web Server should be selected. On Windows XP you will not see the Personal Web Man-
ager option. Also, the World Wide Web Server is actually World Wide Web Services on
Windows XP. If these are not selected then you should select them and click OK.

To install, click the Next button. After Windows is finished installing IIS to C:\Inetpub,
there will be several new items on your computer. In C:\Inetpub there are five folders:
AdminScripts, iissamples, Scripts, webpub, and wwwroot. The wwwroot folder is where
the default Web site for IIS lives. You will be working mostly with this folder and virtual
directories.

T i p

A virtual directory can live anywhere on your computer, but it shows up under the Default Web site.
This is extremely useful if you don’t want to keep your Web files under the C:\Inetpub directory.

Figure 1.4 The Windows Component tab.

17 Installing the IIS Web Server

That’s it! IIS is now installed on your machine. With this install you can run HTML and
ASP pages. Now it is time to add the PHP CGI Interpreter to your IIS installation. You can
either read on to see how this process is completed for Windows 98/ME and the Apache
Web Server, or you may just skip straight to Chapter 2 to learn how to install PHP.

Installation on Windows 98
To install PWS on Windows 98 you will need to insert your installation disk and navigate
to the add-ons\pws folder. Once you reach the add-ons\pws folder, double-click on the
setup.exe icon. This will launch the PWS installer. You will be presented with a screen with
three buttons: Minimum, Typical, and Custom. Click on Custom. You should see a screen
that looks like Figure 1.5.

Once you get to this screen make sure the following are checked:

■ Common Program Files

■ FrontPage 98 Server Extensions

■ Microsoft Data Access Components

■ Personal Web Server (PWS)

■ Transaction Server

Once you have selected these options, click the Next button and make sure the installation
directory for the WWW service is set to C:\Inetpub\wwwroot, as shown in Figure 1.6.

Figure 1.5 The PWS installation—Custom Installation
screen.

18 Chapter 1 ■ So What Is All This Server Stuff?

Figure 1.6 The PWS installation—WWW Service screen.

Click Next to finish the installation. Once the installation is complete you can skip to
Chapter 2 to install the PHP CGI Interpreter.

Installing the Apache Web Server
on Windows ME/XP
Installing Apache on Windows ME or Windows XP Home Edition is very easy. I have
included the Apache 2.0.46 msi installer on the CD in the Apache directory. If a newer ver-
sion is available at the time you read this, you can download it at www.apache.org.

To install Apache, double-click on the apache_2.0.46-win32-x86-no_src.msi in the
Apache directory on the CD included with this book. Once the installation starts it will
ask you for a few things.

■	 Network Domain. This is where you enter the DNS domain for which your server
will be registered. Just type in mydomain.com.

■	 Server Name. This is your server’s fully qualified domain name. Type in

server.mydomain.com.

■	 Administrator’s E-Mail Address. Just enter your e-mail address here.

■	 For Whom to Install Apache. Select for All Users, on Port 80, and as a Service.

Your screen should now look like Figure 1.7.

19 Installing the Apache Web Server on Windows ME/XP

Figure 1.7 The Apache MSI installer.

Once you have all that information entered, click the Next button. Select Typical Install,
and then click Next. Click Next one more time to accept the default directory, C:\Program
Files\Apache Group. The installation will create a subdirectory in the default directory
named Apache2—this is where all the files for Apache will live.

That’s it! Wasn’t that easy? Now you can move on to Chapter 2 and install the PHP CGI
Interpreter.

Installing the Apache Web Server on UNIX
The first thing you need to do is get the source code for the Apache server. I have included
version 2.0.46 on the CD in the Apache directory. There might be a newer version out
when you read this book—if you would like to check, you can download the newer ver-
sion from www.apache.org. There are a two basic requirements that you will need to
install Apache.

■	 Disk Space. You need at least 50 megabytes of temporary free disk space available.
After Apache is installed, it occupies 10 megabytes.

■	 Compiler. You must have the ANSI-C compiler installed. You can get the GNU C
Compiler (GCC) for free from www.gnu.org/software/gcc/gcc.html.

20 Chapter 1 ■ So What Is All This Server Stuff?

Now that you know the requirements and have the Apache source files, you need to
extract them from the tarball. To do this, type the following at the command prompt:

$ gzip -d httpd-2.0.46.tar.gz

$ tar xvf httpd-2.0.46.tar

This will create a new directory under your present working directory containing the source code

of the distribution. You will need to cd into that directory before compiling the server.

$ cd httpd-2.0.46

Now you need to configure the Apache source tree. This is done by using the configure
script that is in the root directory of the distribution that you just extracted. Before you
run this script there are several environment variables and flags that the configure script
can take. The environment variables are listed in Table 1.3 and always appear before the
configure command.

Depending on the setup of your computer, you will need to define some of these envi-
ronment variables. An example of the configure command might look something like
this:

$ CC=”gcc” ./configure —prefix=/sw/pkg/apache

For a complete list of the configuration options, run ./configure—help. After configure
has run, it will take several minutes to test for the availability of features on your machine
and to finish building the Makefiles.

After the configure script has finished running you can build the distribution by typing in
make at the command prompt. This will create the installation files. Be patient with this
process; it usually takes approximately 3 minutes to finish. It could be even longer
depending on the number of modules you selected.

CC=

CPPFLAGS=

CFLAGS=

LDFLAGS=

LIBS= Library location information.

INCLUDES=

TARGET=

SHLIB_PATH=

Table 1.3 Environment Variables

Variable Name Description

The name of the C compiler.

Miscellaneous C preprocessor compiler options.

Debugging and optimizations for the C Compiler.

Options for the linker.

Header file search directories.

Name of the executable which will be built. The default is httpd.

Options which specify shared library paths for the compiler and the linker.

21 Installing the Apache Web Server on INIX

As soon as the make script is finished, you can install the Apache Web Server package. To
do this, simply type make install at the command prompt. After the install script has fin-
ished, Apache is installed and ready to go. There are some customizations that you can do
by editing the httpd.conf file. There are tons of options in this file—far too many to go
through here in this book. So, I direct you to the online Apache documentation at
http://httpd.apache.org/docs-2.0/.

After you have finished customizing your Apache installation you should have to start the
server. During the installation, Apache put a start script in your bin directory called
apachectl. To start the server you simply have to type the following:

$ /apache/bin/apachectl start

You should now be able to request a Web page via a URL (http://localhost/). If you ever
need to stop the server, you type:

$ /apache/bin/apachectl stop

That’s it! You should now have the Apache Web Server installed and running. You can now
move on and install the PHP CGI Interpreter and get moving on PHP.

This page intentionally left blank

chapter 2

Waging the
Configuration War

■ The Platforms

■ Building and Installing PHP on UNIX

■ Installation on Windows for IIS/Apache

■ Testing Your Installation

PHP is a very versatile language and comes with a myriad of options. PHP sup-
ports several hundred APIs and interfaces to other programming tools. So it
would be worthwhile to consider what you want PHP to do and install only the

modules you need.

You will be configuring the PHP interpreter with a few extra modules, one of which is
Boutell’s GD library (GD SDK). The GD SDK allows you to generate and manipulate images
on the fly, which I consider to be very important in the development of games. If you would
like to install other modules, feel free. The majority of the installs are very similar.

Let’s get to it!

The Platforms
Since PHP is not OS dependent we will be installing and configuring PHP for UNIX and
Windows.

When you talk about UNIX, the Web server of choice is Apache. You can configure PHP
in two different ways when you install on Apache.

■ As a CGI Interpreter.

■ As a Apache module. 23

24 Chapter 2 ■ Waging the Configuration War

N o t e

You can only configure PHP as an Apache module with the Apache server.

When PHP is compiled as an Apache module it runs in the same memory space as the
Apache server. This means two things to you: 1) you get a performance boost when inter-
preting pages, but 2) you get screwed if a page goes haywire. If one of your PHP pages goes
haywire when running in the same memory space as the Apache server, the Apache server
will halt. This means you are dead in the water—no pages will be served up until it is
restarted. However, if you configure PHP as a interpreter you avoid the whole issue alto-
gether. The disadvantage is obviously a minor performance hit, but it is negligible.

On the other side of the coin is Microsoft Windows with IIS (Internet Information Server)
or PWS (Personal Web Server). Distributions of PHP are available from IIS 3 up to IIS 5;
I have included the IIS and Apache installs on the CD provided with the book.

Building and Installing PHP on UNIX
If you’re going to install PHP on a Windows platform you can continue on to the next sec-
tion, unless this topic is really of interest to you.

The installation on UNIX-like systems is fairly straightforward. You need to generate the
make files by running the autoconf scripts and then carry out a make and install. I will
only be covering how to install PHP as a CGI Interpreter for simplicity’s sake.

Let’s get started. The first step is to uncompress the distribution and extract the files.

$ gzip -cd php-4.2.3.tar.gz | tar xvf -

Now you must change to the directory where the distribution was unpacked and run the
configure script to generate the necessary make files. You can pass other options to tell the
configure script what modules you would like to install. For example:

$./configure --with-gd=/usr/src/gd-2.0.4 --enable-gd-native-ttf --enable-gd-imgstrttf -
-with-jpeg-dir=/usr --with-png-dir=/usr

The –with-gd option is an example of how you can specify at build-time what modules you
would like to install. Some of these extras or add-on modules are detected automatically;
other add-ons you may need to specify specifically in the configure script. If you have any
doubt that the module won’t be installed automatically you should specify it in the
options. Refer to Table 2.1 for a list of the modules and their commands.

25 Building and Installing PHP on UNIX

Configuration Add-Ons

Argument
Add-On Module Description

Checking for internal redirects — enable-force-cgi-redirect

Configuration file location — with-config-file-path=DIR Specifies the location of the
configuration file php4.ini.

Directory of executables — with-exec-dir=DIR When PHP runs in safe mode the
executables are chosen only from the
directory specified by DIR.

Escaping quotes from data — enable-magic-quotes Data put into a database may have

escapes these quotes with a backslash.

—

— with-ldap=DIR

Mcrypt support — with-mcrypt=DIR mcrypt encryption support.

Regular expression library — with-system-regex

Remote include() — enable-url-includes

Short tags — disable-short-tags PHP scripts are enclosed by <?php ?>

Syntax highlighting — disable-syntax-hl Disables the default behavior of
highlighting PHP syntax.

—

XML support — with-xml Enables support for XML.

BC math functionality — enable-bcmath Adds support for Bench Calculator

Debugger — enable-debugger

GD — with-gd=DIR

Table 2.1

Feature or
to Configure

This checks to see if a given request
was an internal redirect with respect
to the server.

quotes in it. Enabling this option

GPC variables enable-track-vars GPC–GET, POST variables from forms
are sent to the server. If this is enabled
the server will track these variables.

LDAP support Enables support for Light-Weight
Directory Access Protocol.

Allows PHP to use the underlying OS’s
regular expression library.

This allows includes from HTTP and
FTP locations.

tags or the short form <? ?>. This
option will disable the latter.

Warnings enable-maintainer-mode Turns on compiler and dependency
warnings.

math functions.

Enables support for PHP’s internal
debugger.

Enables support for GD. DIR points to
the directory for GD.

* This is a small list of the add-on options. For more, run configure–help.

26 Chapter 2 ■ Waging the Configuration War

Now if the earlier configure script ran successfully there should be a file called make in the
directory. This is the file that will build the distribution. To run it, type the following:

$ make

If you see a link time failure, you are most likely missing a reference to a library. If a library
is in a non-standard location you will need to specify the path to the library and re-run
the make file again.

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/var/otherlibdir
$ make

After all of the source files have been successfully compiled and linked you can install the
distribution. To do this you must have root privileges. I am assuming that you are
installing as root; if you are not you will need to assume the super user.

T i p

To assume the super user, or root user from a command line, simply type su at the command prompt
and enter the password.

To install the distribution, simply enter the following command:

$ make install

That’s it. You should now have PHP installed on your system. The only thing left to do is
tell Apache what to do with PHP pages. Navigate to the folder where your Apache config-
uration file lives (usually httpd.conf), open it, and type the following lines:

AddType application/x-httpd-php4 .php4 .php
AddType application/x-httpd-php4-source .phps
Action application/x-httpd-php4 /cgi-bin/php
DirectoryIndex index.html index.shtml index.cgi index.php4 index.php
AddIcon /icons/script.gif .conf .sh .shar .csh .ksh .tcl .php4 .php .phps

Finally, you will need to restart the Apache Web server. That’s all that you need to do—
you’re done configuring PHP and Apache. Now would probably be a good time to take a
break and get another Mountain Dew. . . . Next up: testing!

Installation on Windows for IIS/Apache
The folks at www.php.net have made the installation for Windows extremely simple. You
can download the already compiled binaries, which I have included for you on the CD, or
you can download the source and compile it yourself. I will not go over how to compile

27 Installation on Windows for IIS/Apache

the source on a Windows machine, but if you really would like to learn that, there is won-
derful documentation at www.php.net.

To start the installation of PHP, double-click on the php-4.3.2-installer.exe file on the CD.
This will bring up the installation wizard. Go ahead and click the Next button and agree
to the license agreement. Make sure that the installation type is set to Standard and click
the Next button. If the directory C:\PHP is where you want the installation, click Next;
otherwise change the directory. Now you will be presented with a screen to enter your
SMTP server and the from address for the mail function. Just leave these as they are
(SMTP Server = localhost, and from address = me@localhost.com), and click Next.

You should see a screen that looks like Figure 2.1. This is where you will select the Web
server that you installed in Chapter 1. If you installed IIS for Windows 2000/XP you will
want to select Microsoft IIS 4 or higher. If you installed PWS for Windows 98 you will
want to select PWS Microsoft Windows 9x. If you installed Apache for Windows ME you
will want to select Apache.

After you have selected your Web server click Next to start the installation. If you are asked
to select scriptmap nodes to add PHP mappings to, click on Select All and then click
on OK.

After the installation is finished you can add the modules that you need.

Figure 2.1 Select your Web server.

28 Chapter 2 ■ Waging the Configuration War

Extension Name Extension DLL Extension Description

Bzip2 php_bz2.dll Compression functions
Calendar Calendar functions
ClibPDF
Crack php_crack.dll Allows you to test the strength of a password.

CURL php_curl.dll
DataBase (dbm-style) php_dba.dll
DBase
DBX php_dbx.dll
DOM XML php_domxml.dll Allows you to operate on an XML document.
Read EXIF
FDF Allows you to handle forms in a PDF document.
GD php_gd2.dll

php_gettext.dll

ICONV

IIS Management php_iisfunc.dll
IMAP
InterBase

Multi-Byte String php_mbstring.dll
Mhash php_mhash.dll Exposes some functions used for hashing.
Ming php_ming.dll
mSQL php_mSQL.dll
MSSQL php_mssql.dll
Oracle
Open SSL php_openssl.dll Exposes OpenSSL functions for encrypting/decrypting.
PDF
Printer

W32API php_w32api.dll
XML-RPC php_xmlrpc.dll

php_xslt.dll
php_yaz.dll

Zip
ZLib

Table 2.2 Available PHP Extensions

php_calendar.dll
php_cpdf.dll Lets you create PDF files.

CType php_ctype.dll Character and string functions.
Client URL Library.
Functions for accessing Berkley DB style databases.

php_dbase.dll Functions for accessing dbase style databases.
Allows you to access all supported databases.

php_exif.dll Reads EXIF headers from a JPEG file.
php_fdf.dll

Boutell’s GD SDK. Allows image manipulation.
Get Text Allows you to internationalize your PHP applications.
Hyperwave php_hyperwave.dll Access to Hyperwave functions.

php_iconv.dll Allows you to convert strings between various character
sets.
Allows management of IIS through code.

php_imap.dll IMAP, POP3, and NNTP functions.
php_interbase.dll Allows access to the InterBase database.

Java php_java.dll Integrates Java support into PHP.
LDAP php_ldap.dll Lightweight Directory Access Protocol.

Handles Japanese character sets.

Allows you to create Flash movies on the fly.
Allows access to the mSQL database.
Allows access to the MS SQL database.

php_oracle.dll Allows access to the Oracle database.

php_pdf.dll More PDF functions.
php_printer.dll Exposes functions for a printer.

Sockets php_sockets.dll Access to sockets.
Access to the Win32 API from PHP.
Allows you to write XML-RPC servers and clients.

XSLT Exposes functions for working with XSLT.
YAZ Allows PHP to interface with the YAZ toolkit.

php_zip.dll Read-only access to zip files.
php_zlib.dll Allows you to read and write gzip files.

* More information on these extensions can be found at www.php.net/manual/en/install.windows.php

29 Testing Your Installation

Installing the Windows Extensions
Now that you have PHP installed you can add extensions to the installation. Table 2.2 pro-
vides a list of the extensions available to Windows.

Adding an extension is very easy—all you need to do is copy the dlls you want and edit
the php.ini file. First create a directory called extensions in the folder where you installed
PHP (usually C:\PHP). Now extract the php-4.3.2-Win32.zip file that is included on the
CD. Go to the directory that the zip file extracted to and copy all of the dlls out of the dlls
directory and paste them into C:\WINNT\system32 if you are on a Windows 2000
machine; C:\WINDOWS\system32 if on a Windows XP machine; or if you are on a Win-
dows 98 machine, C:\WINDOWS\system. Now go back to the folder where the zip file
extracted to and copy all the dlls out of the extensions folder and paste them into the
extensions folder you created.

Now that you have the dlls in their proper places, open up your php.ini file. It should be
located in the C:\<WINDOWS DIRECTORY>\php.ini. Once you have that file open, go
to the “Paths and Directories” section and look for extension_dir =” ./”. We want to set this
to C:\PHP\extensions\. Now go to the “Dynamic Extensions” section and uncomment the
following lines:

1. extension=php_dbase.dll

2. extension=php_gd2.dll

3. extension=php_sockets.dll

N o t e

It is important that you put the trailing backslash on C:\PHP\extensions\

Go ahead and save your php.ini file and exit. You now have installed the extensions and
the PHP interpreter. All that’s left to do is to test the installation to make sure it is parsing
PHP pages.

Testing Your Installation
PHP should now be installed and working on your machine. Go ahead and test it out.
Open up your favorite text editor and type the following:

<?php
phpinfo();
?>

30 Chapter 2 ■ Waging the Configuration War

Then save this file as test.php and move it to a place where you will be able to hit it. If you
are on Windows you can put it in C:\Inetpub\wwwroot\test.php; if you are in UNIX you
can put it in /usr/web/test/php.

Open up a Web browser and type in http://localhost/test.php and you should see some-
thing similar to Figure 2.2.

Figure 2.2 Test results of your new PHP installation.

chapter 3

I Have Conquered
the Server,
Let Me at the Code!

■ The Basics of the HTML Tag

■ The Almighty HTML Document

■ The HTML Body

■ Graphics and HTML

■ Tables

■ Creating Forms for Input

Congratulations; if you are here then you have successfully configured and set up
the Web server and the PHP CGI interpreter. In this chapter I will cover HTML
(Hyper Text Markup Language). HTML is very important to us, because without

it we would not be able to display anything to our user. That would not be a very fun game
would it?

If you feel comfortable with HTML you can skip ahead to Chapter 4 and start in on PHP.
However, if you feel like you need a refresher on HTML, grab some snacks, crack open a
Mountain Dew, then open up your favorite text editor and we will get started.

The Basics of the HTML Tag
HTML tags are straightforward to understand. You have a beginning tag and an ending
tag. In other words, every tag has two elements that are paired together. The beginning
tag looks like <tag_name> and the ending tag looks like </tag_name>. The only difference
between these two tags is the forward slash in the end tag. Almost every tag in HTML

31

32 Chapter 3 ■ I Have Conquered the Server, Let Me at the Code!

has attributes. To use these attributes your tag would look like this: <tag_name
attribute1=”someValue”></tag_name>. The only tags in HTML that don’t have attributes you
can set in the tag are <HTML></HTML>, <HEAD></HEAD>, and <TITLE></TITLE>. All other tags have
one or more attributes that you can apply to them.

Now that you know the basics of an HTML tag, take a look at the different elements of an
HTML document and how it is structured.

The Almighty HTML Document
An HTML document usually has an extension of .htm or .html; however, since you will
be coding in PHP in the near future you should just get in the habit of saving your HTML
documents with the extension .php. To begin, please refer to Table 3.1, which contains the
four basic tags that make up the beginnings of a HTML document.

As you may guess, everything that goes into your HTML document will be surrounded by
the <HTML> tags and anything you want to display will go in between the <BODY> tags.
The <HTML> tags are important; even though the majority of browsers out there can
handle a document without the HTML tags, there is still a chance that your page will be
misinterpreted. It is just safer to include them.

N o t e

Every tag starts out with <name_of_tag> and ends with </name_of_tag>.

The head section of your HTML document (<HEAD></HEAD>) is sort of like a quick reference
for browsers. It supplies the document title, contains META data, and establishes rela-
tionships between HTML documents and file directories. For the most part, you will not
be dealing with all of these in your application. The only tag you will really need to worry
about is the <TITLE></TITLE> tag. All this tag does is give your page a title and display it in
the title bar of the window, like in Figure 3.1.

Description

<HTML></HTML> Creates a HTML document.

<HEAD></HEAD>

<TITLE></TITLE> Sets the title of the document.

<BODY></BODY> Contains the visible area of the document.

Table 3.1 Tags for the Beginning

Tag

Contains the document title and other information that is not displayed on the Web.

33 The Almighty HTML Document

Figure 3.1 An example title tag.

I strongly suggest you give your pages logical names to relieve confusion when you edit
them later; don’t use page names like “Page 1”. Similarly, do not make your titles extremely
long. A good rule of thumb is, if your title is longer than three to five words, then it is too
long.

Let’s go ahead and move on to the nitty gritty of HTML. If you are not quite clear on how
all of these tags fit together, don’t worry—I will show an example soon.

The HTML Body
Table 3.2 shows the BODY tag attributes.

Everything that displays in your HTML page happens inside the <BODY></BODY> tags. When
I say “everything” I mean anything that is visible to the user. That includes images, text,
tables, links, background colors, text colors, link colors, forms, and buttons.

The majority of what we will be using in our games deal with table layouts, forms, images,
and some text formatting. There will not be that much text formatting because the major-
ity of our games will be images and forms, but you might want to create a help section for
your game that looks professional, so take a look at the available text formatting tags.

34 Chapter 3 ■ I Have Conquered the Server, Let Me at the Code!

Attribute Description

Bgcolor #RRGGBB

Text #RRGGBB

Link #RRGGBB

Vlink #RRGGBB

Alink #RRGGBB Sets the color of the link when a user is clicking on it.

Background URL to image

Topmargin # of pixels

Leftmargin # of pixels

Marginheight # of pixels

Marginwidth # of pixels

Table 3.2 BODY Tag Attributes

Values

Sets the color to the specified HEX value.

Sets the text to the specified color.

Sets the link to the specified color.

Sets the visited states of links to the specified color.

Sets the background of the document to a specified image.

Sets the value of the top margin of the document in Internet
Explorer.

Sets the value of the left margin of the document in Internet
Explorer.

Sets the value of the top margin of the document in Netscape.

Sets the value of the left margin of the document in Netscape.

* A complete list of tags is included in Appendix A.

Most of the time you will just want to make the text stand out a little more, maybe for a
header or something. For instance, you might want to label an input field or just make
paragraphs to give instructions. So, we will be using the <H3></H3>, , <P></P>, and

 tags the majority of the time. Take a look at an example of an HTML document with
these elements in it.

<HTML>
<HEAD>

<TITLE>Code Example></TITLE>
</HEAD>
<BODY BGCOLOR=”#ffffff”>

<H3>Welcome!</H3>
<p>Instructions

To master the art of PHP game programming you need to be fluent in HTML. Otherwise no
one will be able to see your game.</p>
</BODY>
</HTML>

35 The Almighty HTML Document

Description

<pre></pre> Creates a preformatted text block.

<h1></h1>
<h2></h2>, <h3></h3>, <h4></h4>, <h5></h5>,

<h6></h6>. <h6></h6>

 Bolds text.

<i></i> Italicizes text.

<u></u> Underlines text.

<tt></tt>

 Bolds text.

<p></p> Creates a paragraph.

 Inserts a line break.

<blockquote></blockquote>

<dl></dl> Creates a definition list.

<dt></dt> Creates a definition term.

<dd></dd> Creates a definition.

 Creates a numbered list.

 Creates a bulleted list.

 Precedes each list item and adds a number or a bullet depending on the
type of list.

<div></div>
with a style sheet.

Table 3.3 Text Formatting Tags

Tag

Creates the largest headline that HTML provides. There are six heading
sizes available:

creates the smallest heading size.

Creates Teletype or typewriter-style text.

Indents text from both sides.

This is used to format large blocks of HTML. It is usually used in conjunction

* A complete list of tags is included in Appendix A.

Take a look at the code. Notice that the whole document lives between the <HTML></HTML>
tags. As we move down to our next line we start the head of the document by placing the
beginning <HEAD> tag. Since our title goes in the head of the document we place our
<TITLE></TITLE> tag, with our title, and close out our </HEAD> tag.

Are you noticing a pattern yet? Let me reiterate: everything is always going in between
tags.

36 Chapter 3 ■ I Have Conquered the Server, Let Me at the Code!

Next, you start the <BODY> of the document. Notice the attribute BGCOLOR=”#ffffff”. All this
does is set the background color of the document to white. For the rest of the attributes
associated with the <BODY></BODY> tag refer to Table 3.2. Next you will use one of the head-
ing tags. I usually use <H3></H3> for a heading tag because it does not seem too large or too
small. Again, the text that I want displayed goes in between the opening and closing tags.
Now you will start a new paragraph. Bold the first word, return to the next line, and insert
the text.

T i p

A
 tag in HTML is exactly the same thing as putting in a \n or \n\r in C/C++.

Take a look at the results, which should look similar to Figure 3.2.

See, how easy was that?! Okay, now that you can dominate any text that might come your
way let’s add some graphics to it and make it look pretty.

Graphics and HTML
There are currently three types of image formats that HTML supports: .jpg, .gif, and .png.
Each format has its own specifications and nuances. There are, of course, advantages and
disadvantages to using each. Let’s take a look at these formats and see their capabilities.

Figure 3.2 The results from the example HTML code.

37 Graphics and HTML

The File Formats
The .jpg file format, pronounced “jay-peg”, is best used when you want to display pho-
tographs because it supports a full 24-bit color palette. It is a “lossy” compression algo-
rithm, meaning that the algorithm that compresses the color information crunches the
files in size but the image quality takes a hit. Most of the time you cannot see the differ-
ence in image quality, unless you’re printing the graphic on a professional image setter,
which we aren’t going to do.

The .gif (Graphics Interchange Format) file format is designed to handle a 256-color
palette. When a .gif compresses an image it uses a “lossless” compression algorithm. This
means that the compression makes the file smaller in such a way that the original image
can be reconstructed bit for bit. To do this it remaps the colors in an image, using what is
called a Color Look Up Table (CLUT) to new colors in a 256-color palette. Then the image
is compressed using Run Length Encoding (RLE). RLE is not an efficient way to compress
images if there are many changes in color across a line of pixels, but it does a bang-up job
when a row of pixels has many pixels of the same color.

.gifs also support transparency. You do this by defining one of the colors in the CLUT to
be a transparent color. Then any pixels in the image that are mapped to that particular
color become transparent. This is very handy for setting images on top of other images or
having a single image that can be shown with several different backgrounds. Transparen-
cies also allow you to make odd-shaped images, such as arrows or circles, that don’t show
a rectangular frame.

Not only does .gif support transparencies, but it also supports multiple images. Meaning
that you can have frames and multiple images compressed into the same file. This means
that you can create little animated images.

T i p

When choosing a color for a transparency, use bright purple, bright pink, or bright green since these
colors normally don’t show up in an image.

The final supported format for images is .png (Portable Network Graphics), pronounced
“ping.” This format was developed to replace the older and simpler .gif format. .png has
four main advantages over the .gif format: alpha channel support, gamma-correction,
better interlacing, and better compression. However, .png does not support animated
frames, so if you want an animated image you must use .gif. .png was developed to be a
single-image format only.

.png’s compression is superb because it supports true color, grayscale, and palette-based
images. .jpg supports the first two, and .gif supports the third. .pngs usually get 5% to 25%
better compression than .gif files.

38 Chapter 3 ■ I Have Conquered the Server, Let Me at the Code!

C a u t i o n

If your .png files are saved using the true-color mode, they will often be larger then expected. Make
sure you use the palette-based mode when saving simple images.

.png supports transparencies like .gif does, but it does this in a different way. Instead of
specifying a color in the CLUT, you specify an alpha channel or a mask channel. All three
.png image types (true-color, grayscale, and palette) can store an alpha channel. So what
does this mean? Well, where .gif stores a 3-bit RGB value for the transparency color for
every pixel, .png stores a 4-bit RGBA value for every pixel. You may be wondering why this
is any different from the .gif transparency. When a .gif is placed over a background and it
has transparency values, you might see some jagged edges around the image where it
meets the background. But when a transparent .png file is placed over a background, no
artifacting occurs. A great example of this is when you have an image with a drop shadow,
like in Figure 3.3.

Now that you see the difference between the images I know you are asking yourself, “Okay
it looks better, but he said it stored an extra bit of information. Won’t this make the file
size bigger?” And the answer is yes, but only if you use the alpha channel in an excessive
way. So, if you have a .png alpha palette and you want four levels of transparency, you have
to use four different palette entries. But since for the majority of cases you’ll need only one
level of transparency, this won’t be a problem and the .png will always come out to a com-
parable size.

Now that all of these graphic formats are available to you, how will you know which one
to use? The answer is very simple: use .jpgs if you are displaying something with a full
color palette that has many changing colors. Use .gif if you want to do a small animation
or transparency. Use .png if you don’t want to use .gif, since you can get the same results
with .pngs as you can with .gifs.

Figure 3.3 .gif versus .png transparency.

39 Graphics and HTML

Using the File Formats in Your Document
All hail the image tag. Yes, that’s right, the image tag. It allows you to display images on
your page. What does it look like? Here is a breakdown of the image tag:

accessKey – Sets or retrieves the accessibility key.

align – Sets the alignment of the image, possible values are absBottom, absMiddle,

baseline, bottom, left, middle, right, texttop, top.

alt – Alternate text of the image. This will be displayed if the image is not shown or

if someone has their browser set to not show images.

border – The amount of border, in pixels, that you want around your image.

id – Sets the ID of the image.

height – Sets the height of the image.

name – Sets the name of the image.

src – This is the location and source of the image.

usemap – Sets the URL to use as a client-side image map.

width – Sets the width of the image.

The real heart of the tag is the src attribute. SRC is the source of the image. It can be a rel-
ative path or an absolute path. A relative path is relative to where you are in your direc-
tory structure. If you specify an absolute path it doesn’t matter where you are in the
directory structure. For instance, a relative path would look something like this: <img
src=”…/images/someimage.gif ” border=”0”>, where an absolute path can look like this:
, or like
this: . You will be using all relative paths
for two reasons: 1) it makes your application more scalable, and 2) it makes your applica-
tion self contained. If you were to use relative paths and the image on somewhere.com dis-
appeared, you would now have a broken image. But, if you keep everything within your
application you won’t have this problem. The only way you will get a broken image is if
you don’t reference it correctly.

You should become very familiar with the image tag. You will be using it quite often, and
knowing how to tweak the attributes of the tag will give you superb control over the
appearance of the page. Take a look at an example using the image tag.

<html>
<head>

<title>Image Example</title>
</head>

<body bgcolor=”#ffffff”>

40 Chapter 3 ■ I Have Conquered the Server, Let Me at the Code!

Here is an image with the image aligned to the right of the text.

Here is an image without the align tag in it at all.

Here is the same image, but really big.

Here is the same image, but really small.

</body>

</html>

The image tag is very easy to understand and use. In the code example, notice that the
image tag has no ending tag—this is another special case in HTML. We basically have
four images displayed on the screen; one is aligned to the right of some text. This was done
by using the align attribute. You might want to play with the align attribute a bit to see
what each of the properties can do to your image. This is very handy if you want text to
wrap around an image. The next image is just placed on the screen with no align attribute.
This is how you will use the image tag most often. The next two images use the width and
height attributes. These allow you to change the width and height of an image. One is
larger then the original image and one is a lot smaller than the original image. Take a look
at Figure 3.4 for the results of our little code sample.

Figure 3.4 The image result from the code sample.

41 Graphics and HTML

Now that you know almost everything there is to know about images, you can concentrate
on laying out a framework for your games. To do this you must understand how tables
work. I cannot stress enough how important this is for layout and for keeping your game
together.

Tables
Believe it or not, tables are your best friends. You’ll use tables to control where things end
up on your page. You can make tables spread out and take up the whole page, no matter
how big the browser window is, or you can make the table very rigid and occupy only part
of the screen. The first step with tables is knowing what you can do with them.

Anything you can lay out in a grid should be laid out in tables. If you have an image that
is curvy, lay a grid over it and find out where you can make slices to create a table. (I’ll
cover this in more detail later.)

There are three very basic elements in a table: there is the table itself, a table row, and a
table cell. The tags for these are <table></table>, <tr></tr>, and <td></td>, respectively. You
might wonder, “Why is the tag for a table cell <td></td>?” Well, “td” really stands for table
data, so if I talk about the table data I am referring to the table cell.

To make a table, you start the table tag, start a table row tag, start a table data tag, end a
table data tag, end the table row tag, and then end the table tag. Like this:

<table border=”1”>
<tr>

<td>Cell 1</td>
<td>Cell 2</td>

<td>Cell 3</td>
</tr>

</table>

Make sense? For each cell you need you put a <td></td> tag between the <tr></tr> tags. For
each row you need you put a <tr></tr> tag between the <table></table> tags. Just remem-
ber that you can have a cell span multiple cells, and you can have a row span multiple
rows, but you can’t have a cell without a span in a lower row wider than any row above it.

Remember that it has to be a grid. Take a look at the attributes of the table, table row, and
table data tags.

<table></table>

Border – Sets the amount of border you want around your table. If the value is 0
then no border will be displayed. The default value of border is 0.

Cellspacing – Sets the amount of space, in pixels, between the cells. The default
value is 2.

42 Chapter 3 ■ I Have Conquered the Server, Let Me at the Code!

Cellpadding – Sets the amount of space, in pixels, between the cell’s border and its

content. The default value is 2.

Width – Sets the width of the table. It can be either a number, in pixels, or a per
-
centage. The percentage is based on how large or small the client window is.

Height – Sets the height of the table. It also can be a number or a percentage, just

like the width property.

Align – Sets the alignment of the table. Possible values are left, center, and right. By

default, the tables will be aligned left.

Bgcolor – Sets the background color of the table.

<tr></tr>

Align – Sets the alignment of the table row. Possible values are center, justify, left,

and right. By default, left is selected.

Bgcolor – Sets the background color of the table row. This overrides the bgcolor in

the table tag for the particular row that it is specified on.

Width – Sets the width of the table row.

Height – Sets the height of the table row.

Valign – Sets the vertical alignment of the table row. Possible values are middle,

baseline, bottom, and top. By default, middle is selected.

<td></td>

Align – Sets the alignment of data and the justification of text in the table cell. Pos
-
sible values are center, justify, left, and right. By default, left is selected.

Bgcolor – Sets the background color of the table cell. This overrides the bgcolor in

the table row tag for the particular cell that it is specified on.

Colspan – Sets the number of columns, or cells, that this cell will span.

Rowspan – Sets the number of rows that this cell will span.

Width – Sets the width of the cell.

Height – Sets the height of the cell.

Nowrap – Sets whether the browser will automatically perform word wrapping on

the cell.

Valign – Sets the vertical alignment of data and text in the table cell. Possible val-
ues are middle, baseline, bottom, and top. By default, middle is selected.

Before continuing, I want to show you what these options can do. Let’s create a table with
a border of 1, no cellpadding, three rows, three cells in each row with some spanning mul-
tiple columns, and background colors on some cells.

43 Graphics and HTML

<html>
<head>

<title>Table Example</title>
</head>

<body bgcolor=”#ffffff”>
<table border=”1” cellpadding=”0” cellspacing=”0” width=”450”>

<tr height=”25”>

<td align=”left” valign=”top”>Aligned left and top</td>

<td align=”center” valign=”middle”>Aligned center and middle</td>

<td align=”right” valign=”bottom”>Aligned right and bottom</td>

</tr>
<tr height=”25”>

<td align=”left” valign=”top” colspan=”2”>This spans two data cells</td>
<td align=”left” valign=”top” rowspan=”2”>Notice this is as big as the cell

above it. This cell also spans two rows</td>
</tr>
<tr height=”25”>

<td align=”left” valign=”top” bgcolor=”#cccccc”>Color #cccccc</td>
<td align=”left” valign=”top” bgcolor=”#999999”>Color #999999</td>

</tr>
</table>
</body>
</html>

This code should look something like Figure 3.5.

Figure 3.5 Example code results after using the table, table
row, and table data tags.

44 Chapter 3 ■ I Have Conquered the Server, Let Me at the Code!

See all the cool things you can do with tables? Once you get the hang of the tables and the
way they flow you can start nesting tables inside of other tables to get different effects. For
future games in this book, you will start out with a base table that will be called the frame-
work table. This table encompasses the five major elements to a page: a header, a left bar,
a content panel, a right bar, and a footer. Then, inside of each of those you may have some
content, a menu, or nothing at all. But you will always start out with this basic base table:

<table border=”0” cellpadding=”0” cellspacing=”0” width=”750”>
<tr>

<td align=”left” valign=”top” colspan=”3”>HEADER</td>

</tr>

<tr>

<td align=”left” valign=”top” width=”100”>LEFT</td>
<td align=”left” valign=”top” width=”550”>GAME GOES HERE</td>
<td align=”left” valign=”top” width=”100”>RIGHT</td>

</tr>
<tr>

<td align=”left” valign=”top” colspan=”3”>FOOTER</td>
</tr>

</table>

For the purpose of this book, your games will be comprised of multiple tables or forms
that are formatted with tables, and they will go into the content panel. You will write out
your header, left, right, and footer panels with PHP itself. But let’s not get ahead of our-
selves; I will cover all of that in the next chapter. For now, get some practice with laying
out tables with multiple graphics to make a cool-looking interface.

Layouts, Tables, and Graphics
As promised, you are going to make a cool-looking interface. You can use this interface on
your games if you like or you can create your own. By the time you’re done with this sec-
tion you will be a master at laying out tables.

When laying out graphics to work with it is handy to have a graphics application such as
Photoshop or Paint Shop Pro. These programs allow you to create the graphics for the
Web and they will make slicing up graphics much easier. I have included Paint Shop Pro
on the CD, but you can use whatever graphics application you prefer as long as it can save
.gifs or .jpgs.

45 Graphics and HTML

When laying out a table, always start in the upper left-hand corner of the image and make
your way across the top in columns. This is what we call left-to-right order. Building a
table in this manner will better allow you to see the final table layout in code. I have
included an image on the CD under the Chapter 3 directory called interface.pcx. Go ahead
and open the image so you can create a table layout with graphics.

Now you have to take the image and break it up into columns. I usually create three
columns in a table. This seems to give very good flexibility in how the final product turns
out—not to mention that it fits into our five-panel layout very nicely.

To create the columns and rows you will need to drag grid lines onto your image. In Paint
Shop Pro this is done simply by dragging the mouse from the ruler to the image. Create
two vertical grid lines in the image. Start the first grid line just to the right of the left-
hand bar and work your way across. Place your second vertical grid line directly to the
left of the right bar. Create a horizontal grid line just above the bottom bar. Now create
a horizontal grid line just below the top bar of the graphic. Your results should look like
Figure 3.6.

Figure 3.6 Creating the first set of grid lines.

46 Chapter 3 ■ I Have Conquered the Server, Let Me at the Code!

Notice how you can start to see a table layout appearing. The top of the image makes up
one row and three columns. So the general table layout in HTML will look like this:

<table border=”0” cellpadding=”0” cellspacing=”0”>
<tr>

<td align=”left” valign=”top”></td>
<td align=”left” valign=”top”></td>
<td align=”left” valign=”top”></td>

</tr>
</table>

You don’t necessarily have to slice up your image like this though; there are several options
available to you. An alternative would be to slice out the top image as one big graphic so
that you would then have a single row with a single column in it. If you needed the top
row to span multiple columns you would just put a colspan in the table data.

C a u t i o n

Only slice out images as large images if there isn’t a lot of color information in them. Otherwise
you will end up with very large files and very long load times.

You should now have all of the grid lines in place and have a fairly good idea of how to
create your table. The only thing left to do before we leave the graphics realm and head
back to code is to slice out the images and save them in a format that we can use.

To slice out an image, simply click on the Select tool and drag your cursor in between the
grid lines. The selection should snap to the grid lines. After you have a section of the image
selected, copy the selection, start a new image the size of the selection that you have made,
and paste the selection into the new image. Once you have done this you will need to save
the image as a .gif or a .jpg. Since we have quite a bit of color information that we need
we will use the .jpg file format for all the reasons described earlier.

Once you have sliced out and saved all of the images, you can create the table. When doing
table layouts with images to recreate a specific look, you don’t want to have any borders,
cellpadding, or cellspacing in your table. If you did have cellpadding or cellspacing in your
table, then when you put the images into it they would not butt-up against each other.
This would totally defeat the effect that you are trying to achieve. Remember, all you are
trying to do is create a shell for your game; you aren’t trying to display some Excel spread-
sheet where you would need borders and padding to make it readable.

47 Graphics and HTML

Once created, your table should look something like the following:

<table border=”0” cellpadding=”0” cellspacing=”0” width=”750”>
<tr>

<td align=”left” valign=”top”></td>
<td align=”left” valign=”top”></td>
<td align=”left” valign=”top”></td>

</tr>
<tr>

<td align=left” valign=”top”></td>
<td align=”left” valign=”top”>GAME GOES HERE</td>
<td align=left” valign=”top”></td>

</tr>
<tr>

<td align=”left” valign=”top”></td>
<td align=”left” valign=”top”></td>
<td align=”left” valign=”top”></td>

</tr>
</table>

After all of this craziness you will end up with something that looks like Figure 3.7 when
you hit it with your Web browser.

Figure 3.7 Results of creating your table with graphics.

48 Chapter 3 ■ I Have Conquered the Server, Let Me at the Code!

Great, you now understand when to use the different graphic types and how to lay out
simple or complex tables. The only thing left is getting input into your game. This is where
forms come in. Forms give your user a way to enter in the information that they want.

Creating Forms for Input
Creating a form for input is quite simple. It is just like using every other HTML tag. A
form essentially consists of three elements: the form itself, the fields in the form, and some
element to submit the form. Take a look at the attributes of the Form tag.

<form></form>

Action – Sets the URL to which the form is posted for processing. Can be a relative
or absolute path, or a mailto to process the form via email.

Enctype – Sets the MIME encoding type of the form. This is usually used only
when uploading files to the server.

Method – Sets how the form is going to be retrieved by the processing page. Possi-
ble values for this are POST (will post the information to the server) and GET
(will put the name value pairs of the form on the query string).

Name – Sets the name of the form.

N o t e

When you use a form in the examples in this book you will be using the POST value for the method.
The main reason for this is that when you use the POST method you are not limited in the amount
of data that can be sent to the HTTP server. The GET method limits you to the maximum length of
a URL, which is currently 2048 bytes. 2048 bytes is not a lot of information; you could fill that up
with just a few text fields.

To allow your user to enter information you must give them a way to type in that infor-
mation. HTML offers several form controls to allow you to do this.

<INPUT>

Name – Sets the name of this element.

Type – Sets the type of input element. Possible values for this attribute are TEXT,

BUTTON, CHECKBOX, RADIO, IMAGE, FILE, HIDDEN, RESET, SUBMIT, and

PASSWORD.

Width – Sets the width in characters of the input field if it is of type text, other
-
wise sets the width of the control in pixels.

Value – Sets the initial value of the input field if it is of type text, checkbox, radio,

or file. This attribute is optional except for the radio element.

49 Creating Forms for Input

Checked – If this element is of type checkbox or radio it will select this element.

Accept – Sets the content types this element will accept if it is of type file.

Readonly – Sets this element to be read only.

Tabindex – sets the order in which this element will be selected if the user hits

the Tab key.

<TEXTAREA></TEXTAREA>

Name – Sets the name of this element.

Rows – Sets the number of rows in characters for this text area box.

Cols – Sets the number of columns in characters for this text area box.

Tabindex – Sets the order in which this element will be selected if the user hits

the Tab key.

Wrap – Sets how the text in the element will wrap. Possible values are soft, hard,

and off. Soft word wrapping means that the text will be displayed with word wrap
-
ping but submitted without carriage returns. Hard means text is displayed with

word wrapping and submitted with carriage returns. Off means word wrapping is

disabled.

There is one more control that needs to be covered: the SELECT control. This is a special
control for two reasons: 1) it has its own child controls, called OPTIONs, and 2) it can cre-
ate a drop-down or a list box.

T i p

A drop-down list is an element that allows you to select a single item from a drop-down box. A list
box is an element that allows you to select multiple items in a list.

Take a look at the code example below to see how to use the SELECT control.

<SELECT name=”dropDownList”>
<OPTION VALUE=”1”>Element 1</OPTION>
<OPTION VALUE=”2” SELECTED>Element 2</OPTION>
<OPTION VALUE=”3”>Element 3</OPTION>

</SELECT>

<SELECT name=”listBox” SIZE=”4” MULTIPLE>
<OPTION VALUE=”1”>Element 1</OPTION>
<OPTION VALUE=”2”>Element 2</OPTION>
<OPTION VALUE=”3”>Element 3</OPTION>

</SELECT>

50 Chapter 3 ■ I Have Conquered the Server, Let Me at the Code!

Take a quick look at the very first SELECT element. It is just a drop-down list with three
values in it. To specify the values in the drop-down list you simply use the OPTION tag.
The OPTION tag has only two attributes that can be used: VALUE and SELECTED.
VALUE sets the value for that element, and SELECTED specifies the element that is ini-
tially selected when the form loads. The text in between the OPTION tags is exactly what
the user will see.

There isn’t much difference between the first SELECT element and the second SELECT
element. The major differences are the SIZE attribute and the MULTIPLE attribute. The
SIZE attribute tells the select box how many items to display at once, while the MULTI-
PLE attribute tells the select box that the user is allowed to select multiple items.

There you have it! Those are all the form controls that you can have in a form to allow the
user to enter data. Just to make sure you understand how it all works together, take a look
at the following code example:

<HTML>
<HEAD>

<TITLE>Form Example</TITLE>
</HEAD>

<BODY BGCOLOR=”#ffffff”>
<FORM name”frm_Example” action=”#” method=”post”>

Text Box <input type=”text” name=”txtSingleLine” width=”25”>

Text Area <textarea name=”txtArea” rows=”10” cols=”15”></textarea>

Check Box <input type=”checkbox” name=”chkBox” value=”1”>

Radio Button <input type=”radio” name=”rbButon” value=”1”>

<input type=”radio” name=”rbButton” value=”2” checked>

Drop Down List

<SELECT name=”dropDownList”>

<OPTION VALUE=”1”>Element 1</OPTION>

<OPTION VALUE=”2” SELECTED>Element 2</OPTION>

<OPTION VALUE=”3”>Element 3</OPTION>

</SELECT>

List Box

<SELECT name=”listBox” SIZE=”4” MULTIPLE>

<OPTION VALUE=”1”>Element 1</OPTION>

<OPTION VALUE=”2”>Element 2</OPTION>

<OPTION VALUE=”3”>Element 3</OPTION>

</SELECT>
</FORM>
<p>That’s it…look at that form!!!</p>
</BODY>
</HTML>

51 Conclusion

Figure 3.8 The example form.

You should now have something that looks similar to Figure 3.8.

There is a lot more you could do with this form to make it look better and read more
clearly. One of the biggest steps you could take to improve this form is to put it in a table
layout so that all of your labels and form elements line up. You could also arrange the form
elements differently in the table.

Conclusion
That was a lot of information to take in. You have done quite a bit in this chapter and
should be very proud of yourself. You learned the basic structure of the HTML document,
how to format text, how to work with tables to create layouts, how to use graphics in a
Web page, how to use graphics and tables together to create a really great look and feel for
your game, and how to create a form to take input from your user.

However, there is one last thing before you move on to combining your newfound HTML
knowledge with PHP. This chapter provided a limited view of HTML; thus I strongly
encourage you to investigate HTML further and learn more about it. Use the Web and
other resources to learn about DHTML, JavaScript, and CSS (Cascading Style Sheets). All
of these elements will allow you supreme control of your Web page.

Now on to PHP!

This page intentionally left blank

Enter the

Language

Chapter 4
Say Hello to PHP .55

Chapter 5
Operators, Statements, and Functions .77

PART II

This page intentionally left blank

chapter 4

Say Hello to PHP

■ Creating a PHP page

■ Data Types

■ Type Casting

■ Variable Variables

■ Constants

■ Naming Conventions

■ Functions for Variables

■ Functions for Strings

■ Regular Expressions and Pattern Matching

■ Processing Forms with PHP

What can PHP do for you? PHP can create dynamic applications that can be
delivered over the Web. In comparison, HTML can only create static content
because the Web browser interprets the page when it is requested; the server

doesn’t do anything but send the page to the browser. But when a PHP page is requested
on the server, the server itself processes the code that is in the proper delimiters and sends
the final results to the Web browser. This allows you to pull different content into the page
each time it is requested. This is very handy for you because now you can create an inter-
active game that is updated from user input.

55

56 Chapter 4 ■ Say Hello to PHP

Creating a PHP Page
Creating a PHP page is very similar to creating an HTML page, but there are two major
differences. First, your page extension will be .php instead of .html and, second, you will
also have PHP code. To start a block of PHP code you use the following delimiters: <?php,
which will start the block of PHP code and ?>, which will end the PHP code block. Take a
look at the following PHP page:

<HTML>
<HEAD>

<TITLE>First PHP Page</TITLE>
</HEAD>

<BODY BGCOLOR=”#ffffff”>
<?php

echo(“This text was written out by PHP”);
?>
</BODY>
</HTML>

N o t e

In ASP, the delimiters for code blocks are <% %>. If you like these better, you can set up your PHP
interpreter to use them instead of the <?php ?> delimiters.

All this does is simply print the text “This text was written out by PHP” into the browser.
You can also print out HTML tags in the echo statement, like this:

echo(“<p>This text is bolded and written out by PHP</p>”);

This is very important to keep in mind. Why? Well, if you needed some client-side code
that used variables from the server side you could write out the client-side code with PHP.
I will not cover any of the client-side languages such as JavaScript, but it is still important
to keep in mind.

Another very important note is the ending of a PHP line of code. It ends with the semi-
colon (;). If you don’t have this, your code will not work properly. If you haven’t been cod-
ing in C/C++ or Java then you need to get into the habit of putting semicolons at the end
of your code.

These are the basics of creating a PHP page. Now you can move along to the data types
available to PHP.

57 Data Types

Data Types
PHP has many of the data types that a language such as C/C++ has. It uses the three basic
types: integer, double, and string. PHP also uses constants, arrays, and objects. The unique
part of PHP is that you do not explicitly declare the type for the variable in PHP. The rea-
son for this is that PHP converts the variables on the fly to the appropriate type. This is
called type juggling. Here is an example of creating variables using the three basic types:

$var1 = 1; // integer
$var2 = 2.0; // double
$var3 = “21”; // string

T i p

All variables start with a $, and must then begin with a non-numeric character. It is good practice
to declare all of your variables before using them; although this is not required, it makes that code
a bit clearer for anyone who is reading it.

You might have noticed that the Boolean type was not mentioned. That is because PHP
does not support it. Instead, PHP evaluates true and false like C/C++ does. Any integer
that equals 0 will evaluate to false and anything that is non-zero will evaluate to true. With
strings, any string that is blank (“”) will evaluate to false, and any string with a character
in it will evaluate to true.

Variables in PHP are also case sensitive. That means that $someVar is not the same as
$SomeVar. However, built-in functions and structures are not case sensitive. So echo is the
same as ECHO.

To further clarify the concept of type juggling, check out the following examples:

$somevar = 1; // This is currently set to an integer.
$somevar = 2.67; // It is now set to a double.
$somevar = “123A String”; // It is now set to a string.
$x = 1; // This is an integer.

// This is still an integer. After the addition the
value is now 126.

$x = 3 + $somevar;

See how that works? It can come in handy in some cases because it cuts back on the num-
ber of variables you will need. In the same respect it can get pretty crazy if you’re trying
to debug some code and it is juggling types on you.

When PHP is type juggling strings, it follows a few basic rules. If the string begins with a
valid integer, the string will evaluate to that value. If the string includes an integer and it
is not at the beginning, the string will evaluate to 0. A string will be type cast as a double
if and only if the value of the string is the double. So the string “1.10” will evaluate to a

58 Chapter 4 ■ Say Hello to PHP

double with the value 1.10. But a string with the value 88.5 percent will evaluate as an
integer with a value of 88.

Type Casting
PHP also offers you a way to explicitly
type cast your variables. The major rea-
son for this would be if you needed to
make sure that you were comparing an
integer to an integer.

if((int)$somvar1 == (int)$somevar2)
{

echo(“These are the same”);
}

Take a look at Table 4.1 for the available
type casts.

Variable Variables
PHP also supports variable variables. In most cases, variables have dynamic values (mean-
ing they change). But variable variables make the variable name dynamic. Variable vari-
ables are not very practical and create quite a bit of confusion, but they are really cool.
Take a look at what they can do:

$somevar = “Gun1”;

$$somevar = “Gun2”;

echo($Gun1); // prints Gun2

echo($$somevar); // prints Gun2

See what I mean? It’s pretty confusing, but really cool. Here is what is happening. The first
line of code creates a variable of type string called $somevar. The second line of code uses
the value of the first variable ($somevar) to create the name of the new variable. So the new
variable is named $Gun1. When you print these two variables you end up with exactly the
same results.

Constants
Constants are values in your application that will never change. For example, instead of
including the literal string “My Cool Game”, you create a constant and reference the constant
throughout your code. This makes your code much easier to update. Instead of changing
hundreds of lines of code where “My Cool Game” exists, you simply change the constant.

Result

(int)

(integer)

(double)

(float)

(real)

(array)

(object)

Table 4.1 Type Casts

Type Cast

Casts the variable to an integer.

Casts the variable to an integer.

Casts the variable to a double.

Casts the variable to a double.

Casts the variable to a double.

Casts the variable to an array.

Casts the variable to an object.

* These change the data type of a variable

59 Naming Conventions

To define a constant in PHP you use the define() function.

define(“GAME_TITLE”, “My Cool Game”);

The define() function takes two parameters. The first is the name of the constant, and the
second is the value of the constant. To reference this constant later in your code you would
simply use what you entered as the first parameter.

echo(GAME_TITLE);

You can also tell if a constant is defined by using the defined() function. This will return 1
if the constant is defined and 0 if the constant is not defined.

if(defined(GAME_TITLE))
{

echo(GAME_TITLE);
}

PHP also includes several built-in constants that are available to you. PHP has defined
TRUE as 1 and FALSE as 0. You can retrieve the version of PHP you are using by refer-
encing the PHP_VERSION constant. PHP_OS will tell you what OS PHP is running on.
You can retrieve the current file being parsed and the current line number by referencing
the _FILE_ and _LINE_ constants.

Additionally, PHP gives you access to some constants for error reporting, such as
E_ERROR, E_PARSE, and E_WARNING. You can also access several variables that are
predefined. You can find out what these variables are by using the phpinfo() function. You
used this function while testing your PHP installation in Chapter 2.

Naming Conventions
Now you and I both know that PHP type casts all
of its variables. However, I still like to prefix my
variables and form element names with what I will
be using them for. For example, if I will be using
the form element as a string I prefix the name with
str. If I were going to use the variable as an integer
I would prefix the variable with an n. You don’t
have to do this at all, but it does make reading
code a whole lot easier, especially with all the type
cast juggling that PHP does. It helps you keep
things straight. If you don’t already have a naming
convention for variables, come up with one. Table

Integer n

float f

double dbl

string str

char c

char array sz

array arr

class C

m_

Table 4.2 Variable Prefixes

Data Type Prefix

member variable

4.2 shows the notations I use most often.

60 Chapter 4 ■ Say Hello to PHP

Those are just a few of the prefixes I use. Again, you don’t have to use them at all, but I do
recommend that you come up with some sort of naming convention. It really does help
out when you come back to a piece of code after a while, or when someone else is reading
your code.

As you may have noticed, it is nothing more than Hungarian notation. If you are familiar
with Windows programming then you are probably very comfortable with Hungarian
notation.

Functions for Variables
Now you know what types of variables PHP can handle and how to use the majority of
them. (I will cover objects and arrays later on.) Now take a look at the built-in functions
that PHP gives us for working with variables.

gettype()

gettype() determines that data type of a variable. gettype() returns a string. Possi-
ble return values for gettype() are: integer, double, string, array, object, and
unknown type (and since PHP 4: Boolean, resource, and NULL).

if(gettype($somevar) == “string”)

{

echo($somevar);

}

settype()

settype() explicitly sets the data type of a variable. The type is passed in as a string.
Possible values are: integer, double, string, array, or object. If the type is success-
fully set, then settype() returns true; otherwise it returns false.

If(settype($somevar, “integer”)

{

echo(“Successfully set the type to a integer”);

}

isset()

isset() is used to determine whether a variable has been given a value. If the vari-
able has been given a value, then isset() returns true; otherwise it returns false.

if(isset($somevar))

{

echo(“The variable has a value”);

}

61 Functions for Strings

unset()

unset() is used to unset a variable, or destroy it. This essentially frees all the mem-
ory that is associated with that variable.

unset($somevar);

if(isset(($somevar))

{

echo(“This text will never print!”);

}

empty()

empty() is the exact opposite of the isset() function. It will return true if the vari-
able has not been set, and false if it has been set. This would be the same as saying:

if(!isset($somevar))

is_datatype()

is_int(), is_integer(), and is_long() all do exactly the same thing. They tell you
if the variable in question is an integer. The double data type also has three
functions: is_double(), is_float(), and is_real(). The is_string() function tells you
the variable is a string, and the is_array() and is_object() functions work the same
way with their respective data types.

$somevar = “this is a string”;

if(is_string*$somevar))

{

echo(“The variable is a string”);

}

Functions for Strings
Understanding how to manipulate strings in PHP will help you tremendously. It will allow
you to validate user input and extract data from text files in an efficient manner. PHP gives
you an enormous number of functions to manipulate strings—take a look at Table 4.3.

Most of the functions are fairly self explanatory, such as strlen(). But others need a little
bit more attention. printf() and sprintf() are good examples of these; let’s take a closer
look at these two functions.

62 Chapter 4 ■ Say Hello to PHP

String Functions

Function Description

addslashes(string) string Adds escape slashes to a string.

bin2hex(string) string

chop(string) string Removes the trailing white space from a string.

chr(ASCII) string

chunk_split(string, [chunklen], string Inserts the string end at every chunklen in the
[end]) specified string.

convert_cyr_string(string, string Converts the specified string from one Cyrillic character
from, to)

cypt(string) string DES-encrypts the string.

echo(string) void Prints the specified string.

explode(separator, string) array

flush() void

get_meta_tags(filename, Array
[use_include_path])

htmlentities(string) string Converts the characters in the specified string to their

htmlspecialchars(string) string Converts any special characters in the string to their

implode(delimiter, array) string Uses the delimiter to join together each element in an
array into a string.

ltrim(string) string Strips the white space from the beginning of the string.

md5(string) string Calculates the MD5 hash of the specified string.

nl2br(string) string Inserts the
 tag before all the line breaks in the
string.

ord(string) int
the string.

parse_str(string) void

print(string) void Prints the specified string.

printf(string, [arg]) void Outputs a formatted string.

quoted_printable_decode(string) string Converts a quoted printable string to an 8-bit string.

QuoteMeta(string) string Escapes meta characters in the string.

Table 4.3

Return
Data Type

Converts a binary string into ASCII hexadecimals.

Returns the character for the specified ASCII code.

set to another.

Splits the specified string into an array.

Flushes anything that is waiting in the output buffer.

Returns an array of all the <META> tags in the
specified file.

HTML equivalent.

HTML equivalent.

Returns the specified ASCII value of the first letter of

Parses the string into variables like it was a query string.

Functions for Strings 63

String Functions (continued)

Function Description

rawurldecode(string) string Decodes a URL-encoded string.

rawurlencode(string) string Encodes a string to a URL-encoded string.

setlocale(category, locale) string Sets the locale information for functions in the

similar_text(string1, string2, int Calculates the similarity between string1 and string2.
[percent])

soundex(string) string

sprintf(format, [args]) string Returns a formatted string.

str_replace(pattern, string Replaces all occurrences of pattern with replacement
replacement, string) in string.

strchr(string1, string2) string

strcmp(string1, string2) int Compares string1 against string2.

strcpsn(string1, string2) int Returns the number of characters in the beginning
of string1 that do not match any of the characters
in string2.

strip_tags(string) string Strips all the HTML and PHP tags from the specified
string.

stripslashes(string) string Strips all escape character slashes from the string.

strlen(string) int

strpos(stirng1, string2) int

strrev(string) string

strrpos(string1, string2) int

strstr(string1, string2) string

strtok(sring1, string2) string

strtolower(string) string

strtoupper(string) string

strtr(string, from, to) string

substr(string, start, [length]) string Returns the characters in string from the specified start
point.

ucfirst(string) string

ucwords(string) string

Table 4.3

Return
Data Type

specified category.

Calculates the soundex key for the string.

Finds the first occurrence of string2 in string1.

Returns the length of the string in characters.

Finds the first occurrence of string2 in string1.

Returns the specified string in reverse order.

Finds the last occurrence of string2 in string1.

Finds the first occurrence of string2 in string1.

Tokenizes string1 into segments separated by string2.

Converts all characters in the string to lowercase.

Converts all characters in the string to uppercase.

Replaces all occurrences of from in the string with to.

Converts the first character of the string to uppercase.

Converts the first character of each word to uppercase.

64 Chapter 4 ■ Say Hello to PHP

printf() and sprintf()
Each of these functions produces a formatted string. printf() prints the formatted string
to the page, whereas sprintf() returns you the formatted string without printing it. Take
a look at the sprintf() function:

string sprintf(string format, mixed [args]…);

N o t e

In PHP, printf() and sprintf() function like printf() and sprintf() in C/C++.

The format string indicates how each of the arguments should be formatted. There are 10
different formatting arguments.

d Decimal integer
b Binary integer
o Octal integer
x Hexadecimal integer with lowercase letters
X Hexadecimal integer with uppercase letters
c Character whose ASCII code is the integer value of the argument
f Double
e Double using exponential notation
s String
% A literal percent sign

The format string uses these arguments to create a string. For example:

// The following line gets a string for printing later
$strFormatted = sprintf(“You fired your gun %d times”, $numFired);

See how that works? You simply create a string, and then put in the appropriate argument
where you want one of your variables to show up. All arguments start with a % sign. So to
print the literal percent sign, your string would look like this:

printf(“This is 40%%”);

Notice how the percent sign doesn’t take any additional arguments. You can also add
padding or number formatting to your string. The delimiter to add padding is a single
quote (‘) and then the specified padding element. For instance, to add a string of periods
to a line after a string you would use ‘.’ as the padding argument. Padding arguments are
not required, and by default they are a single space. Take a look at the code example below
to see how to use the padding argument.

printf(“%’.-80.80s%’.3d%s”, $title, $number, “
”);

65 Functions for Strings

Take a closer look at the arguments for this string. It consists of three directives: a string,
an integer, and a string. The first argument, %’,-80.80s, shows that periods should be used,
the hyphen tells the string to be aligned to the left, and it sets the minimum and maxi-
mum widths to 80. The second argument produces a right-justified, period-padded, inte-
ger element with a maximum width of three characters. The final argument is simply a
string that you specify to put in an HTML
. If you had specified values for the title and
number variables, the output would look something like this:

Appendix....................456

Earlier I mentioned the ability to format numbers too. This is the same principle as the
padding in a string. You simply specify how many digits you would like to see. If you spec-
ify a width for an integer you will see only that many characters, and if you specify a width
for a float it will specify how many digits will appear after the decimal point. Take a look
at the following code sample:

$someint = 4356;

$dollars = 20;

printf(“%3d %.2f”, $someint, $dollars);

// The output looks like 435 20.00

In the example above, %3d limits that argument to printing three characters. The %.2f
argument specifies that it is a floating point number, and that it should print two more
characters after the decimal place.

If this isn’t enough control over your number formatting, PHP offers you a number
formatting function called number_format().

string number_format(float num, int precision, string dec_point, string thousands_sep)

The number_format() function can take up to four arguments and returns a string. Look at
the following example:

$num= 987654321.1234567;
echo(number_format($num));
echo(number_format($num, 2));
echo(number_format($num, 7, chr(44), “ “));

The output from the preceding code looks like this:

987,654,321
987,654,321.12
987 654 321,1234567

Now that you have complete control over formatting and the majority of functions for
string manipulation, I’ll move on to regular expressions.

66 Chapter 4 ■ Say Hello to PHP

Regular Expressions and Pattern Matching
Regular expressions are used to provide advanced string matching and manipulation. A
pattern in a regular expression is nothing more than a set of characters that describes the
nature of a string. For instance, you could find a literal string or validate that the input the
user entered was actually an e-mail address. Regular expressions have a mini-language of
their own. Once you learn it, you can apply it to many other languages in addition to PHP.
You will use regular expressions sparingly in your games. Most of the time it will be to
simply validate that the input entered is in the form that you expect it in, which is very
important, isn’t it?

Examine the following regular expression pattern:

^create

The carat (^) in this pattern tells the regular expression engine that it should only match
this pattern on the beginning of strings. So the string “Create a new character” would meet
the criteria for the match, but “To create a new character” would not meet the criteria.
Regular expressions also offer you a dollar sign ($) character to match strings that end
with the pattern.

If you take the previous example of ^create and turn it into the string created$, then it
would no longer find a match on “Create a new character” but it would find a match on
“Your character has been created.” And if you combine the carat (^) and the dollar sign ($)
together like this:

^create$

you can now match on an exact word. So, “To create a new character” would now meet the
criteria of the pattern. You are not limited to matching on literal characters either. You can
also match on special characters such as a new line or a tab. To do this, you would simply
use the appropriate escape character, in your string. For instance, to match a tab at the
beginning of a line you would do this:

^\t

To match on a new line, a carriage return, or a form feed you would use the respective
escape characters \n, \r, or \f. For punctuation marks you would also escape the charac-
ter; for example, a literal period would be \., and a literal backslash would be \\.

So far you know how to match literals only, but you’ll need a way to describe the pattern
more loosely. You can describe this pattern with character classes. Creating a character
class is very simple: you simply place the content within brackets. For example, if you
wanted to match all vowels you would create a character class that looks like this:

[AaEeIiOoUu]

67 Regular Expressions and Pattern Matching

You can also specify ranges in your character classes by using a hyphen, like this:

[a-z] // match any lowercase letter
[A-Z] // match any uppercase letter
[0-9] // match any digit
[\f\t\r\n] // match any white space

Let’s say you want to create a character class to forbid a digit from being the first charac-
ter in a string. To do this you would again use the carat (^). Inside a character class the
carat (^) means “not” instead of the beginning of the string.

^[^0-9][a-z]$

This will match any strings such as “all23”
or “u47”. But it will not match strings
such as “7all” or “8teen”. PHP has several
of these character classes already built in.
Take a look at Table 4.4.

To allow even more flexibility in your pat-
terns, you can use curly braces ({}) to
match multiple cases of characters or
character classes. So to match exactly x
number of occurrences of the previous
character or character class you would do
something like this:

^a{1,5}$ // matches: a, aa, aaa, aaaa,
or aaaaa

PHP Character Classes

Character
Class Description

[[:alpha:]]
[[::digit:]] Matches any digit.
[[:xdigit:]] Matches any hexadecimal digit.
[[:alnum:]] Matches any letter or any digit.
[[:space:]]
[[:upper:]]
[[:lower:]]
[[:punct:]] Matches any punctuation mark.

Table 4.4

Matches any letter.

Matches any white space.
Matches any uppercase letter.
Matches any lowercase letter.

* These classes are defined in PHP and may not work
correctly if you try to use them in other languages.

You can also find a string with x or more occurrences of a character or character class. For
instance:

^b{2,}

This will match a string with two or more b’s in it. So it would find a match on bbooo,or
bbblood, etc.

There are five more special characters in regular expressions you should know about. They
are:

period .
question mark ?
star *
plus +
pipe |

68 Chapter 4 ■ Say Hello to PHP

The period is used in regular expressions to represent any non-new-line character. So
the pattern ^.s$ will match any two character strings that end in “s” and begin with any
non-new-line character.

The question mark means that the previous character is optional. So if you were match-
ing doubles in a string your pattern would look like this:

^\-?[0-9]{0,}\.?[0-9]{0,}$

This may look a bit confusing, but it is actually quite simple to explain. The “^\-?” means
look for a string that begins with an optional minus sign, followed by zero or more digits,
“[0-9]{0,}”. Now look for an optional period, “\.?”, followed by zero or more digits, “[0-
9]{0,}”.

The star is just like a wild card. It means match anything with zero or more of the previ-
ous character. So you could further simplify the matching doubles pattern to:

^\-?[0-9]*\.?[0-9]*$

Make sense? The star is the exact equivalent to saying {0,}, which means zero or more.

The plus symbol means match one or more of the previous characters, or the same thing
as saying {1,}. A simple example of this would be matching any integer number:

^\-?[0-9]+$

This is looking for a string that begins with an optional minus sign, followed by one or
more digits. Another very handy function of the plus sign would be to validate e-mail
addresses, which is something you might want to do quite often in your Web-based
games.

^.+@.+\..+$

This pattern might look complex, but if you break it down you will find that it is actually
quite simple. First, it is looking for a string that begins with any non-white-space charac-
ter, followed by any non-white-space character. Then it is looking for the literal character
“@”, followed by any non-white-space character. Then it looks for the literal character “.”
followed by any non-white-space character.

Now this pattern isn’t perfect, but it is close enough. To match on any non-white-space
character is a broad scope, but for the most purposes you just want to make sure that the
user entered in a valid looking e-mail address.

The final character to take note of in regular expressions is the pipe (|). The pipe behaves
exactly like a logical OR operator. This is extremely useful because you can check a string
for certain words or characters. For instance:

(G|St)un$

69 Regular Expressions and Pattern Matching

This will match any string that has the words “Gun” or “Stun” in them.

Using the Regular Expression Functions
PHP has five functions for handling regular expressions. Two of them are used for search-
ing and matching, two are used for searching and replacing, and one is used for splitting.

The most basic of the five functions is ereg(). It takes two parameters with an optional
third parameter, and returns true if the pattern is found and false if the pattern is not
found.

bool ereg(string pattern, string source, array [regs]);

Let’s go back to the e-mail validation pattern that was presented earlier to see how to use
the ereg() function.

$email = “ruts@datausa.com”;

$nResult = ereg(“^.+@.+\..+”, $email);

if($nResult)

{

echo(“This is a valid email address”);
}
else
{

echo(“This is a invalid email address”);
}

The optional third argument, array [regs], can store the matching substrings of the pat-
tern for later use. This means, for example, that when you pass in an e-mail address it can
take the username, domain name, and top-level domain name and store them in the array.
Take a look at the following example:

$email = “ruts@datausa.com”;

$nResult = ereg(“^(.+)@(.+)\.(.+)”, $email, $arrEmail);

if($nResult)

{

echo(“$arrEmail[0] is a valid email address” .
“
Username: $arrEmail[1]
Domain: $arrEmail[2]
Top Level: $arrEmail[3]”);

}
else
{

echo(“This is an invalid email address”);
}

70 Chapter 4 ■ Say Hello to PHP

The results of the preceding example are:

ruts@datausa.com is a valid email address
Username: ruts
Domain: datausa
Top Level: com

So what did this do exactly? After ereg() verified the pattern, the original string was stored
in the first index of the array. Then the first parenthetical substring from the pattern is
stored in the second index of the array. The first parenthesized substring, of course, would
be the username, ruts. Then it matched the “@” symbol and proceeded to match the third
argument in the pattern. After it found a match for the third argument it created another
index in the array containing the domain name, datausa. Finally it matched the top-level
domain name, com, and created the final index in the array.

ereg() also has a sister function called eregi(). eregi() functions exactly the same as ereg()
but ignores case when looking for matching patterns.

Now take a look at the two functions for searching and replacing strings: ereg_replace()
and eregi_replace(). Both of these functions search for a given pattern and replace all
occurrences of that pattern with the new string that you specify. eregi_replace() does
exactly the same thing as ereg_replace(), but it isn’t case sensitive. Each of these functions
takes three arguments:

string ereg_replace(string pattern, string replacement, string source);

You specify a pattern that you would like to look for, a replacement for any occurrences of
that pattern, and the source that you are searching. These functions do not have an
optional array argument, but they do have something similar. Any parenthetical substring
in the pattern will be stored in a buffer that you can access by referencing it as \\1. There
are nine slots that you can access, (\\1...\\9). Take a look at the following example:

$strSource = “Games Are Great”;

$strModified = ereg_replace(“G(ame)s”, “g\\1S”, $strSource);

echo($strModified);

This example takes the string, “Games Are Great”, and searches for a pattern of “G(ame)s”,
where it finds a match at the beginning of the string and replaces the match with “gameS”,
and returns the modified string. The results look like this:

gameS Are Great

You can reference the “ame” characters by using the \\1 because it is a parenthetical sub-
string. If the pattern were broken up like, “G(am)(es)”, then “am” would be referenced as
\\1, and “es” would be referenced as \\2.

71 Processing Forms with PHP

The fifth and final function that uses regular expressions is the split() function. The
split() function searches a source string for a pattern and breaks up the source string into
an array based on matches of the pattern. A great use of the split function is if you are
reading a comma-separated list in and need to break apart the strings so you can work
with them.

$strSource = “e1, d4, e5, e6”;
$arr = split(“,”, $strSource);
echo(“$arr[0]
$arr[1]
$arr[2]
$arr[3]”);

The above example splits the source string on the literal character “,” and creates an array
with each string in its own index. The results look like this:

e1
d4
e5
e6

Unlike ereg_replace() and eregi_replace, split() has an optional third argument. You
can specify a limit of how many elements you would like to split. Here is the full split
function:

array split(string pattern, string source, int [limit]);

Processing Forms with PHP
In Chapter 3 you learned how to create a form with HTML. Now it is time to learn how
to get the data out of the form so you can use it. Getting the data in PHP is very easy.
When a form is submitted to the server using a method of GET, each form element cre-
ates a PHP variable. When a form is submitted with a method of POST, you need to access
the global PHP array $_POST. When using GET, the value of the variable created is the con-
tent of the form element. When using POST, the index into the array is the form element’s
name. This is where the value of that form element is stored. Take a look at the following
example:

<!— htmlform.php —>
<HTML>

<HEAD>
<TITLE>Example Form Processing</TITLE>

</HEAD>
<BODY BGCOLOR=”#ffffff”>
<FORM name=”frmSample” action=”htmlform.php” method=”post”>
What is your character’s name?

<input type=”text” name=”strCharacter”>

72 Chapter 4 ■ Say Hello to PHP

 <input type=”submit” value=”Submit”>

</FORM>

<?php

if(isset($_POST[“strCharacter”]))

{

echo(“Welcome, “ . $_POST[“strCharacter”] . “!”);
}
?>
</BODY>
</HTML>

If you were using the GET method, the example would look like this:

<!— htmlform.php —>
<HTML>

<HEAD>
<TITLE>Example Form Processing</TITLE>

</HEAD>
<BODY BGCOLOR=”#ffffff”>
<FORM name=”frmSample” action=”htmlform.php” method=”get”>
What is your character’s name?

<input type=”text” name=”strCharacter”>
 <input type=”submit” value=”Submit”>
</FORM>
<?php
if(isset($strCharacter))
{

echo(“Welcome, “ . $_REQUEST[“strCharacter”] . “!”);
}
?>
</BODY>
</HTML>

Notice that for each of these forms an action is specified. You told the form to go to
“htmlform.php” for processing. The form is pointing back to the same page it lives on for
processing, but you could have pointed it to a different page if you wished. The results of
this example should look similar to Figure 4.1.

Most of the time you will always point the page back to itself for processing. Since you are
developing games, you need just about everything to occur on one page. There are excep-
tions to this, however—for example, if you were developing a Massive Multiplayer Online
Game (MMORPG), which I will discuss in Chapter 12, you would use multiple pages to
process the building of units and structures. A good rule of thumb for breaking up forms
is, “do it in sections.” This means break up your game into sections. If you are simply

73 Processing Forms with PHP

Figure 4.1 Processing form example using the GET method.

taking in coordinates for a chess game, then all the processing should be done on one
page. But if you are going to a section of your game to manage units and to a completely
different section to manage buildings, then your entire unit processing should be done on
one page and all of your building processing should be done on another. Basically, keep
everything modular.

Now take a look at a more complex example so you can see how to process all of the form
elements.

<!— allformelements.php —>
<HTML>

<HEAD>
<TITLE>Processing All Form Elements</TITLE>

</HEAD>
<BODY BGCOLOR=”#ffffff”>
<FORM name=”frm_Example” action=” allformelements.php” method=”post”>
<table border=”0” cellpadding=”2” cellspacing=”0”>

<tr>
<td align=”left” valign=”top”>Character’s Name</td>
<td align=”left” valign=”top”><input type=”text” name=”strCharacter”></td>

</tr>

<tr>

<td align=”left” valign=”top”>Starting Amount of Gold</td>

74 Chapter 4 ■ Say Hello to PHP

<td align=”left” valign=”top”>
<select name=”dblGold”>

<option value=”1000”>1000</option>

<option value=”2000”>2000</option>

<option value=”3000”>3000</option>

</select>
</td>

</tr>

<tr>

<td align=”left” valign=”top”>Starting Location</td>
<td align=”left” valign=”top”>

<input type=”radio” name=”strLocation” value=”mountains”>Mountains
<input type=”radio” name=”strLocation” value=”plains” checked>Plains
<input type=”radio” name=”strLocation” value=”swamp”>Swamp

</td>

</tr>

<tr>

<td align=”left” valign=”top”>Equipment</td>
<td align=”left” valign=”top”>

<input type=”checkbox” name=”nEquipmentID[]” value=”1” checked>Sword
<input type=”checkbox” name=”nEquipmentID[]” value=”2” checked>Chain Mail
<input type=”checkbox” name=”nEquipmentID[]” value=”3” checked>Shield
<input type=”checkbox” name=”nEquipmentID[]” value=”4”>Cross Bow
<input type=”checkbox” name=”nEquipmentID[]” value=”5”>Arrows

</td>

</tr>

<tr>

<td align=”left” valign=”top” colspan=”2”><input type=”submit” value=”Sub-
mit”></td>

</tr>
</table>
</FORM>
<?php
if($_POST)
{
$strCharacter = $_POST[‘strCharacter’];
$dblGold = $_POST[‘dblGold’];
$strLocation = $_POST[‘strLocation’];

echo(“You Chose:
$strCharacter
$dblGold
$strLocation
”);
$listvals = $_POST[‘nEquipmentID’];

75 Processing Forms with PHP

for($i=0;$i<count($_POST[‘nEquipmentID’]);$i++)
echo “Equipment ID $i=”.$listvals[$i].”
\n”;

}
?>
</BODY>
</HTML>

The results should look like Figure 4.2.

There is one nuance in this form: the naming of the check boxes. Notice how the names
are all the same and at the end of the name, “nEquipmentID”, I have two brackets []. This is
simply to make this form element an array. Without the two brackets at the end of the
form element name you would not be able to access the form elements correctly. Other
than that, you access the other form elements as discussed before, by using the global vari-
able $_POST. To access the individual elements of the check box, “nEquipmentID”, an array
named “listvals” is created by requesting the proper form element. Then you loop through
each element in the “listvals” array and print out the value. You will learn more about
arrays in Chapter 6.

Figure 4.2 Processing form example using the POST method.

76 Chapter 4 ■ Say Hello to PHP

Conclusion
Pretty cool, huh? Well, okay, I’m sure it could be much cooler, but don’t worry, you are
going to do a lot of cool things in the near future. Next up you will be learning how to
control the flow of your code, the basic operators that you have access to, and how to make
all your code modular by using functions.

Now would probably be a good time for you to make one of your own forms and process
the data using all of your newfound knowledge. If you are still feeling a bit shaky with all
of this, don’t worry, practice makes perfect. Believe me, you will get plenty of practice.

Get to it!

chapter 5

Operators, Statements,
and Functions

■ Arithmetic Operators

■ Logic Operators

■ Bitwise Operators

■ Conditional Statements

■ Loops

■ Functions

■ Including Files

In this chapter you will learn the PHP operators, how to create logical statements in
PHP to control the flow of your code, and how to create functions to aid you in code
reuse. This is the last of the basics of PHP. After this, you will be ready to create your

first game!

Operators
An operator is used to determine a value by performing an operation on one or more val-
ues. Without operators you would not be able to compare values of variables, perform
mathematic operations, concatenate strings, manipulate bits, or even assign a value to a
variable. That doesn’t leave much of anything that you can do, does it?

N o t e

Operators in PHP are similar to those in other languages such as C/C++.

77

78 Chapter 5 ■ Operators, Statements, and Functions

Arithmetic Operators
Table 5.1 Arithmetic OperatorsJust like every other programming lan-

guage, PHP uses the basic mathematical Operator
operators (see Table 5.1). +

-You have probably seen all of these before;
* the only one that might be foreign to you is

the modulus operator. All the modulus /
%operator does is calculate the remainder of

an operation. For example:

$x = 7 % 2; // Set $x to 1

Operation Performed

Addition
Subtraction
Multiplication
Division
Modulus

In the example above, 7 is divided by 2 and the remainder, which in this case is 1, is set to
the value of the variable $x.

As you may have noticed by now, you assign variables with the equals sign. This is called
the assignment operator. Let’s say you wanted to create a variable with a value of negative
1. Here is how you would accomplish this:

$x = -1;

All fairly straightforward? Now take a look at the expressions used to compare values.

Comparison Operators
Comparison operators are used to test a condition. The results of a comparison operation
will always be a Boolean value—i.e., either true or false.

$i = 350;
echo($i == 250);

Here a variable, $i, is set to some number, in
this case 350. Then the variable is compared Table 5.2 Comparison Operators
to another value, 250. Because the two val- Operator Operation Performed
ues are not equal, the example prints false

==
to the screen. Take a look at Table 5.2 for a !=
list of all the comparison operators avail- <>
able to PHP. <

>
<=

I would like to stress a word of caution here:
when using the equals (==) operator be
careful to make sure you use two equals >=

Equals
Not equals
Not equals
Less than
Greater than
Less than or equal to
Greater than or equal to

79 Operators

signs. Otherwise the variable will be assigned to whatever you thought you were compar-
ing it to.

$i = 25;

// This will assign 350 to the

// variable $i and always be true

if($i = 7)

echo(“It is equal to 7”); // This will print every single time

The assignment in an if statement is perfectly legal in PHP. In the example above, instead
of checking the value of the variable with 7, it simply assigned the value 7 to the variable
and evaluated to true, giving results that were totally unexpected. I cannot stress enough
the importance of using the proper operators.

A very simple way of solving the problem would be to put the literal value on the left-hand
side of the operand, like this:

if(350 = $i)

This will generate an error because a value cannot be assigned to a literal. However, you
still have the same issue if you are comparing two variables. If you find your code isn’t
working like you thought it would, make sure you are using the proper operator.

Logical Operators
Logical operators are used to combine con- Table 5.3 Logical Operators
ditions, so multiple expressions can be eval-
uated in a single statement. Take a look at Operator Operation Performed

Table 5.3 for a complete list of the logical && And
operators. || Or

Notice that there are two operators for the
“logical and” and the “logical or” operators.
These operators give the same end results
but have different execution orders. The

and
or
xor
!

And
Or
Exclusive Or
Not

double ampersands will execute before the
“and,” and the double pipes will execute before the “or.” I recommend picking one or the
other and using it consistently. Not only will this help the readability of the code, it will
also help you when trying to debug problems that may occur.

80 Chapter 5 ■ Operators, Statements, and Functions

Just to make sure that everything is clear, take a look at a few examples:

$x = 2;

$y = 5;

$z = 0;

if($x == 2 && $y == 5 && $z == 0)

{

echo(“This text will print because all statements evaluate to true.”);
}

In this example the statement will print to the screen because all of the statements evalu-
ate to true. If any one of these statements evaluated to false, the string would never print
to the screen.

if($x == 3 || $z == 0)
{

echo(“This text will print to the browser”);
}

The text in this example will print to the browser, even though the statement $x == 3 eval-
uates to false. The reason for this is the logical or operator; if one of the conditions
evaluates to true, the whole statement is true.

if(($x == 2 || $z == 3) xor ($x == 5 || $y == 3) xor ($x == 1 || $z == 1))
{

echo{“This text will print to the browser);
}

This example is a little bit more complex than the previous examples. Each parenthetical
expression is first evaluated to determine if it is true or false. Once determined to be true
or false, that value is used in the overall xor statement. Because the first statement in this
expression evaluates to true, the whole expression evaluates to true, and in turn the text is
printed to the browser.

That’s basically it for logical operators. Next you will take a look at the ternary operator.

Ternary Operator
All of the logical operators that were just discussed are considered to be binary operators,
meaning that they perform their logic using two operands. The ternary operator is spe-
cial. It uses three operands to perform a single operation. The ternary operator is used for
quick one-liner if statements. You may have seen it before; it looks like this:

$x == 0 ? echo(“yes”) : echo(“no”)

81 Operators

The first of the three parts of the ternary operator is a Boolean condition before the ques-
tion mark (?). The second of the three parts is a statement between the ? and the colon
(:), which is executed if the condition in front of the ? evaluates to true; and a value after
the colon, which is returned if the condition evaluates to false.

N o t e

For those of you who are familiar with C/C++, the ternary operator in PHP acts exactly like the
ternary operator in C/C++.

As mentioned earlier, the ternary operator is a shortcut for an if…else statement. Take a
look at how the following if…else statement is converted to using the ternary operator:

if($nKingStatus == 1)
{

echo(“check”);
}
else
{

echo(“move = “ . $from . “, “ . $to);
}

// Now for the same statement using the ternary operator
$nKingStatus == 1 ? echo(“check”) : echo(“move = “ . $from . “, “ . $to)

See how much shorter that is? You get the same results from one line of code that you did
from four lines of code. However, the ternary operator doesn’t do much for readability, so
it is completely up to you as to how you would like to use it.

There is one little thing that I would like to mention. As you may have noticed in the pre-
vious chapters and in the previous example, I put a period (.) in between the strings in the
example. All this does is join the strings together. The period, when used in between
strings, is called the string concatenation operator.

N o t e

Concatenation is just a fancy word for joining, or adding, two objects together.

Let’s move on to bitwise operators and then to some variable assignment shortcuts that
will save you some typing.

82 Chapter 5 ■ Operators, Statements, and Functions

Bitwise Operators
Before getting into the operators them-
selves, I want to give you a little lesson in
binary representation, and how the com-
puter stores numbers in memory. Other-
wise none of what I am going to show you
is going to make sense.

A binary number uses only 1s and 0s to
comprise a number. Each 1 and 0 is referred
to as a bit. It is assumed that when storing a
32-bit integer in memory that it is to use 4
bytes. There are 8 bits to a single byte. Using
these 1s and 0s you can create any number.
Take a look at Table 5.4.

Take a look at Figure 5.1 to see how you
count a binary number.

As you can see, you really count from right
to left, going by multiples of 2. So the first
bit on the right-hand side is 1, then the next
is 2, then 4, 8, 16, and so on.

Now that you have a basic understanding of
binary representations, take a look at the
bitwise operators you can use in PHP. There are six bitwise operators all together; four of
them allow you to compare bits, and two of them allow you to shift bits either to the left
or to the right. Take a look at Table 5.5 for all six of the bitwise operators.

One of the biggest reasons to understand bitwise operators is that they are used all the
time in the programming of board games. In the next chapter you will create a chess game
that uses bit-boards. If you were not clear about how to use bitwise operators, you would
not understand how the program will work.

Binary Number
Representations

Binary
Number Integer

0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

Table 5.4

Corresponding

* For simplicity’s sake I used only 4 bits, or 1 byte, to
represent numbers in this example.

Figure 5.1 How to count binary numbers.

83 Operators

Bitwise Operators

Operator Name

& And operator 11 (1011) & 13 (1101) = 9 (1001)
| Or operator 11 (1011) | 13 (1101) = 15 (1111)
^ Exclusive Or 11 (1011) ^ 13 (1101) = 6 (0110)
~ Not operator ~11 (1011) = -12 (1000000000001100)
>> Shift bits to the right by 11 (1011) >> 2 = 2 (0010)
<< Shift bits to the left by 11 (1011) << 2 = 44 (101100)

Table 5.5

Quick Example

All that the bitwise operators do is perform operations analogous to the logical and, or,
xor, and not on each set of bits. Imagine that the bits are lined up one on top of another.
When you “&” two bits together, if they are both 1 (true && true), the result is true, or the
logical bit 1. Take a look at Figure 5.2.

See how the least significant bit in both numbers is set to 1. When they are “anded”
together the result is true, or 1. But when the next bits are “anded” together, the result is
false, or 0, because both bits are false to begin with. Now do the same exact thing with the
“|” operator to see the differences. Figure 5.3 shows the results.

In this example you can see that the “|” operator evaluates to true anytime a true bit
appears in the value. So when the least significant bit in both numbers (1 and 1) is “or’ed”
the logical expression would be: true or true; the result is true. But when the next bits are

Figure 5.2 Using the “&” bitwise operator.

84 Chapter 5 ■ Operators, Statements, and Functions

Figure 5.3 Using the “|” bitwise operator.

“or’ed” together (0 and 0) the logical expression would be false or false, so the result is
false. The exclusive or (^) operator acts like the “|” operator but will evaluate to true only
if one of the bits is set to 1 and the other bit is set to 0. So the expression

1 ^ 1
evaluates to 0, but the expression
1 ^ 0

evaluates to 1, because the expression can only be true one way.

The “~” (not) operator is very unique because it doesn’t operate on two bits. Instead it
operates on only one bit at a time. Remember the example in Table 5.5 for the “~” oper-
ator?

~11 (1011) = -12 (1000000000001100)

This is taking the binary number 1011 (11 in real numbers) and making each bit the
opposite number and making it negative. It has the same effect as multiplying a decimal
number by negative one (-1) and subtracting 1. The reason for this is because the most
significant bit in a 32-bit value tells the number whether or not it is negative. The “~”
operator won’t be used that much, but it is handy to know.

The final two bitwise operators that PHP supports are the left shift (<<) and the right shift
(>>) operators. Each of these operators take two values: the left value is the number that
you want to shift bits on, and the second value is the number bits you are going to shift
the first value by. For example:

11 << 2

--

85 Operators

This will take the decimal number 11, which is the binary number 1011, and shift it by
two bits to the left. To make this example clearer I’ll extend the number 11 to 16-bits.

0000000000001011 << 2 = 000000000101100

See how it shifted all the bits to the left by two, and then two trailing zeros were added to
the binary number? Any bits beyond the 32-bit value fall off the left side and are lost, keep-
ing the number a 32-bit value. The right shift operator performs the equivalent of the left
shift operator but the opposite way.

0000000000001011 >> 2 = 0000000000000010

In this case zeros were added to the beginning of the value and the bits on the right side
fell off the number.

Variable Assignment Shortcuts
Just like in C/C++, PHP has shortcut operators for assignment statements where the first
operand is the variable and the result is stored in the same variable. Take a look at this
example:

$a = $a + 25;

$a += 25; // This is the same exact statement as the line above.

Take a look at Table 5.6 for a list of the variable assignment shortcuts available in PHP.

Shortcut Example Equivalent

+= $x += $i $x = $x + $i
-= $x -= $i $x = $x - $i
*= $x *= $i $x = $x * $i
/= $x /= $i $x = $x / $i
%= $x %= $i $x = $x % $i
&= $x &= $i $x = $x & $i
|= $x |= $i $x = $x | $i
^= $x ^= $i $x = $x ^ $i
.= $x .= $i
>>= $x >>= $i $x = $x >> $i
<<= $x <<= $i $x = $x << $i
++ $x++ $x = $x + 1

$x-- $x = $x - 1

Table 5.6 Variable Assignment Shortcuts

$x = $x . $i

86 Chapter 5 ■ Operators, Statements, and Functions

The increment operator ++ and the decrement operator -- can appear before the variables,
just as they can appear after the variables. The placement of the operator can change the
order of events. For example, if the ++ is placed before the variable, the value is incre-
mented and the new value is returned. But if the ++ is placed after the variable, then the
variable is pre-incremented and then the value is assigned.

/* When used by itself, the increment operator has the same effect whether it appears

before or after the variable */

$x = 10;

$x++; // x = 11

$x = 10;

++$x; // x = 11

$x = 10;

$y = $x++; // y = 10, and x = 11

$x = 10;

$y = ++$x; // y = 11, and x = 11

C a u t i o n

This can affect your loops, so make sure you understand the order of operations occurring here.

Before moving on to statements, I will cover operation precedence. I have mentioned it
several times before and just want to make sure that you know what it means.

Operation Precedence
Precedence is simply the order in which operations will occur, just like in the previous
example where the increment operator was before or after the variable. Precedence can
change the value of the expected outcome. Every operator in PHP has certain precedence;
Table 5.7 shows each operator with the highest precedence first.

Statements
What are statements? Statements provide the logic structure of your application. Condi-
tional statements and loops give your programs the ability to make decisions based on
limited rules.

Statements 87

Operation Precedence

Operator Operation

() Precedence establishment

new Object instantiation

[] Array index access

! Logical not

~ Bitwise not

++ Incrementation

— Decrementation

@ Functional error suppression

* Multiplication

/ Division

% Modulus

+ Addition

- Subtraction

. Concatenation

<< Bitwise left shift

>> Bitwise right shift

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

!= Not equal to

& Bitwise &

^ Bitwise XOR

| Bitwise Or

&& Logical AND

|| Logical Or

?:

= += -= *= /= .= %= &= != ~= <<= >>= Assignment

and Logical AND

xor Multiple XOR

or Logical OR

,

Table 5.7

Conditional Ternary Operator

Multiple evaluation

88 Chapter 5 ■ Operators, Statements, and Functions

if Statements
The if statement is probably one of the most important features of every programming
language. It allows you to execute lines of code only when the specified conditions are
true. Remember all the logical operators discussed earlier in this chapter? This is where
you get to put them to good use. You can make if statements as complex or as simple as
you would like. I recommend making them fairly simple to read; otherwise when you go
back to your code a month later it might take you a while to figure out what is going on.
Take a look at the following example:

<?php

$bInitialized = 1;

if($bInitialized == 1)

{

?>

<table border=1 cellpadding=0 cellspacing=0 width=256 height=256>

<tr>

<td align=”left” valign=”top” bgcolor=”#ffffff”> </td>

<td align=”left” valign=”top” bgcolor=”#000000”> </td>

<td align=”left” valign=”top” bgcolor=”#ffffff”> </td>

<td align=”left” valign=”top” bgcolor=”#000000”> </td>

<td align=”left” valign=”top” bgcolor=”#ffffff”> </td>

<td align=”left” valign=”top” bgcolor=”#000000”> </td>

<td align=”left” valign=”top” bgcolor=”#ffffff”> </td>

<td align=”left” valign=”top” bgcolor=”#000000”> </td>

</tr>
</table>
<?php
}
echo(“This printed a row of alternating
colored blocks because the if statement evaluated to true”);
?>

You can create branched conditions too, meaning that if one of the statements evaluates
to false, you can drop into another code block to be executed. This is accomplished by
using the if…else statement. Here is an example:

<?php

$bInitialized = 1;

if($bInitialized == 1)

{

?>

<table border=1 cellpadding=0 cellspacing=0 width=256 height=256>

<tr>

89 Statements

<td align=”left” valign=”top” bgcolor=”#ffffff”> </td>

<td align=”left” valign=”top” bgcolor=”#000000”> </td>

<td align=”left” valign=”top” bgcolor=”#ffffff”> </td>

<td align=”left” valign=”top” bgcolor=”#000000”> </td>

<td align=”left” valign=”top” bgcolor=”#ffffff”> </td>

<td align=”left” valign=”top” bgcolor=”#000000”> </td>

<td align=”left” valign=”top” bgcolor=”#ffffff”> </td>

<td align=”left” valign=”top” bgcolor=”#000000”> </td>

</tr>
</table>
<?php
echo(“This printed a row of alternating
colored blocks because the if statement evaluated to true”);
}
else
{

echo(“Sorry the program is not initialized”);
}
?>

You can also test multiple conditions if one of the statements evaluates to false using the
elseif keyword, like this:

<?php
if($bInitialized == 1)
{

echo(“The program is initialized”);
}
elseif($bInitialized == 2)
{

echo(“Starting game”);
}
elseif($bInitialized == 3)
{

echo(“The game is running);
}
else
{

echo(“Sorry the program is not initialized”);
}
?>

90 Chapter 5 ■ Operators, Statements, and Functions

N o t e

Make sure that when using the elseif keyword you do not put a space in between the else and the
if. It is all one word in PHP, unlike in other languages such as C/C++.

PHP also offers an alternative syntax for the if statement, if:…endif;. You would normally
use this syntax if you were printing large blocks of HTML in between PHP blocks of code.
Although you could do the same things with the C/C++-like syntax. Take a look at the fol-
lowing example:

<?php

$bInitialized = 1;

if($bInitialized == 1):

?>

<table border=1 cellpadding=0 cellspacing=0 width=256 height=256>

<tr>

<td align=”left” valign=”top” bgcolor=”#ffffff”> </td>

<td align=”left” valign=”top” bgcolor=”#000000”> </td>

<td align=”left” valign=”top” bgcolor=”#ffffff”> </td>

<td align=”left” valign=”top” bgcolor=”#000000”> </td>

<td align=”left” valign=”top” bgcolor=”#ffffff”> </td>

<td align=”left” valign=”top” bgcolor=”#000000”> </td>

<td align=”left” valign=”top” bgcolor=”#ffffff”> </td>

<td align=”left” valign=”top” bgcolor=”#000000”> </td>

</tr>
</table>
<?php
endif;
?>

That’s it for the if statement. Now you can move on to the if statement’s brother, the
switch statement.

The switch Statement
The reason I call the switch statement the if statement’s brother is because the
switch statement acts like a bunch of if….elseif….else statements. Take the following
if…elseif…else statement for example:

<?php
if($bInitialized == 1)
{

echo(“The program is initialized”);
}

91 Statements

elseif($bInitialized == 2)
{

echo(“Starting game”);
}
elseif($bInitialized == 3)
{

echo(“The game is running”);
}
else
{

echo(“Sorry the program is not initialized”);
}
?>

In this example you are repeatedly checking the variable $bInitialized for a certain value,
even though the value of $bInitialized does not change from line to line. To make this
more efficient you would want to check the value of $bInitialized only once. You can do
that with the switch statement. Here is how you can convert the example above into a
switch statement:

<?php
switch($bInitialized)
{

case 1:
{

echo(“The program is initialized”);

break;

}

case 2:

{

echo(“Starting Game”);
break;

}

case 3:

{

echo(“The game is running”);
break;

}

default:

{

echo(“Sorry the program is not initialized”);
}

}
?>

92 Chapter 5 ■ Operators, Statements, and Functions

The switch statement will compare the values of each case with the value of the variable,
just like if you used an if…elseif…else statement, but as soon as it finds a match it executes
only that block of code. If the switch statement does not find a match, then the default case
is executed. Notice the breaks at the end of each case. These are very important because if
you do not use a break, then the code will fall through to the next case. All the break does
is tell the code to stop executing the block and continue to the next statement.

If you are familiar with other languages, such as C/C++ or Java, you will be very familiar
with the switch statement. In fact, the syntax is exactly the same. However, PHP’s switch
statement is much more flexible for two major reasons: 1) Each case does not have to be
a scalar value—it can be any value at all, and 2) You can use variables in each of your
cases. The following example demonstrates using variables in a case statement:

<?php
switch(_SESSION[“GAME_STATE”])
{

case $bInitialized:
{

echo(“The program is initialized”);

break;

}

case $bStarting:

{

echo(“Starting Game”);
break;

}

case $bRunning:

{

echo(“The game is running”);
break;

}

default:

{

echo(“Sorry the program is not initialized”);
}

}
?>

N o t e

The only variable types that are not valid in a case statement are arrays and objects.

93 Statements

In this example there is a variable in the global session data called GAME_STATE. When the
switch statement executes it will check the value of each of the case variables against the
variable GAME_STATE and when it finds a value that matches, it will execute the block of code.

while and do…while Loops
A while loop is the simplest loop in PHP; it acts similar to an if statement. A while loop
evaluates a Boolean expression. If the expression is true, then the code inside the loop is
executed. To break out of a while loop you have to make the Boolean expression you are
testing for evaluate to false, or explicitly use the break statement. Otherwise you will end
up in an infinite loop, which is not good.

<?php
$i = 0;
while($i < 8)
{

if(($i %2) != 1)

$color = “#ffffff”;

else

$color = “#000000”;

echo(“<td align=left valign=top bgcolor=” . $color .”> </td>”);

$i++;

}
?>

N o t e

The while loop also offers an alternative syntax exactly like the if statement does.

<?php while: ?>HTML HERE<?php endwhile; ?>

Let’s say you want the code in the block to execute on the first time, and if a Boolean
expression evaluates to true you would like to execute the code block again. You can
accomplish this with the do…while loop.

The do…while loop will always execute the loop at least once. Then if the Boolean expres-
sion evaluates to true, it will execute the loop until the Boolean expression evaluates to
false.

<?php

$i = 0;

echo(“<SELECT NAME=level>”);

do

{

echo(“<OPTION VALUE=” . $i . “>Level” . $i . “</OPTION>”);

94 Chapter 5 ■ Operators, Statements, and Functions

} while(++$i < $nLevels);

echo(“</SELECT>”);

?>

In this example the option, Level 0, will always be printed even if the variable $nLevels
equals 0. Once the variable $i equals $nLevels the while loop will stop and move on and
print the last line of the HTML select statement.

The for Loop
The for loop takes three expressions separated by semicolons. The first expression is an
assignment statement to initialize the controlling loop variable; the second is a Boolean
expression. As long as the Boolean expression evaluates to true, the for loop will execute.
The third and final expression is any statement that will execute at the end of each itera-
tion of the loop.

N o t e

The for loop in PHP has the same exact syntax as in C/C++.

Now take the do…while loop used in the last example and convert it into a for loop.

<?php

echo(“<SELECT NAME=level>”);

for($loopCount = 0; $loopCount < $nLevels; $loopCount++)

{

echo(“<OPTION VALUE=” . $loopCount . “>Level” . $loopCount . “</OPTION>”);
}
echo(“</SELECT>”);
?>

This produces the exact same results as the do…while loop but in fewer lines of code. You
may use whatever loops you feel comfortable with, but I generally use a while loop when
the number of loops is unknown, and a for loop when the number of loops are known.

N o t e

The for loop also offers an alternative syntax like the if statement and the while loop.

<?php for($i = 0; $i < 10; $i++): ?> some HTML <?php endfor; ?>

Functions
What is a function? A function is a block of code that can be defined once and reused in
multiple parts of the program. This is a very handy tool for a programmer to have. With-

95 Functions

out functions you would be forced to rewrite large chunks of your program every time
you needed to repeat an operation. Without functions you would most likely go insane or
at least you would not be coding.

Functions often take multiple parameters; a parameter is nothing more than a localized
variable that the function will operate on. These parameters allow you to pass data in and
out of your functions. But a function does not have to take any parameters at all. Suppose
you have a function to write out the header of your HTML document; it would look
something like this:

function WriteHTMLHeader()
{

echo(“<HTML>\n”);
echo(“<HEAD><TITLE>My Application</TITLE></HEAD>\n”);
echo(“<BODY bgcolor=#ffffff>\n”);

}

You declare functions by using the keyword function followed by the name you want for
the function. In the above example the name of the function is WriteHTMLHeader. Techni-
cally this function will not do anything at all until you invoke it from another point in the
code. To invoke a function, you simply call it by name followed by any parameters it has.
If the function doesn’t have any parameters, you simply leave the parentheses blank. Here
is an example of calling the WriteHTMLHeader function.

// some code here
WriteHTMLHeader();
// more code

You could call this function several times in a row if you like and it would print the same
HTML header to the browser every time.

Passing Parameters to a Function
Passing parameters to a function is extremely simple. All you need to do is declare a vari-
able for each parameter you want to receive. For example, say you want a function that
pops up a JavaScript error message with whatever message you pass to it.

function ErrorPopup($msg)
{

// Create a JavaScript alert
echo(“<SCRIPT LANGUAGE=’JavaScript’>\n”);
echo(“<!—\n”);
echo(“alert(\”$msg\”);\n”);
echo(“//—>\n”);
echo(“</SCRIPT>\n”);

}

96 Chapter 5 ■ Operators, Statements, and Functions

Now when you invoke this function you will write the following line of code:

ErrorPopup(“This is an error message!”);

As you can see, this time when you invoked the function you passed it a parameter. When
the function was called, the value of the function variable $msg was set to the string, “This
is an error message!”, so any time you reference $msg in the function its value will be what-
ever you passed in.

In the previous example the variable was passed by value, meaning that anything done to
the variable in the function did not affect the value of what was passed to it. For example:

<?php

function square($num)

{

$num *= $num;
return $num;

}

$someNum = 6;

echo(“Variable before going into the function = “ . $someNum);

$results = square($someNum);

echo(“
Variable after going into the

function = “ . $someNum . “
Results of
function = “ .$results);

?>

The results of this chunk of code look like Figure 5.4.

See how the value of $someNum was not affected by the operations that the function square()
did? Suppose that you want the function to change the value of the variable you are pass-
ing in. How would you do that? You would pass the variable in by reference. To pass a vari-
able into a function by reference you need to have an ampersand (&) in front of the
parameter. Let’s take the same example from above and make the function change the
value of the variable by passing it by reference.

<?php

function square(&$num)

{

$num *= $num;
}

$someNum = 6;

echo(“Variable before going into the function = “ . $someNum);

square($someNum);

echo(“
Variable after going into the function = “ . $someNum);

?>

97 Functions

Figure 5.4 Results of passing variables by value.

Figure 5.5 Results of passing variables by reference.

98 Chapter 5 ■ Operators, Statements, and Functions

See how the value of $someNum changed? Its value is the result from the operations inside
the function. Passing variables by reference is a very handy way to return results for mul-
tiple variables because a function can return only one value if you are using the return
keyword.

Recursion
PHP functions also support recursion. Recursion is simply when a function calls itself.
One of the easiest ways to explain recursion is just to show you; take this, for example:

function power($base, $exponent)
{

if($exponent)
{

return $base * power($base, $exponent - 1);
}
return 1;

}

Notice how the return statement is calling the power function, but it is subtracting one
from the variable $exponent every time it is called. Eventually $exponent will hit zero and the
if statement will not execute. At this point is when the recursion ends. Take an in-depth
look at how this works.

echo(power(2,3));

1. The function power is called with the base set to 2 and the exponent set to 3.

2. Next, the $exponent is tested; since it is non-zero it succeeds and proceeds to the
next line.

3. The return statement calls the power function again, except this time the base is 2
and the exponent is also 2.

4. The $exponent variable is tested again. It is still a non-zero value.

5. Power is called again with the value 2 as the base and 1 as the exponent.

6. The exponent variable is tested again; it is still a non-zero value.

7. Power is called a final time with the value 2 as the base and 0 as the exponent.

8. This time the test fails and the function returns 1 to the third invocation of the
function.

9. 1 is now multiplied by the base and the third invocation of the function returns 2
to the second invocation of the function.

99 The Magic of Including Files

10. 2 is now multiplied by the base value, giving us 4, and 4 is returned to the first

invocation of the power function.

11. 4 is now multiplied by the base, giving us the final value of 8, and 8 is returned

from the power function back to your program.

Pretty confusing, huh? Recursion can be a nasty beast but you can do some pretty cool
things with it.

The Magic of Including Files
Now that you have all this cool knowledge about how to make functions, you need a way
to include libraries (so to speak) in your PHP pages. Basically what you can do is make a
file full of common functions that you use all the time and put them in all of your games.
For instance, if you take a look at the CD, I have included a PHP file (common.php) that
has some base functions that will be used in all of the games in this book.

PHP gives you two ways to include files in your application. You can use the require state-
ment or the include statement. When the PHP interpreter encounters the require state-
ment it puts the file in the code and it is now generally available to your page. The include
statement evaluates and executes the code each time the include statement is encountered.
This allows you to have dynamic includes in your files. For example:

for($loopCounter = 0; $loopCounter < 5; $loopCounter++)
{

include(“file” . $loopCounter . “.php”);
}

If you did the above example with the require statement, then the only file that would be
included would be file4.php. Instead of worrying about which one is better I would just
always use the include statement. There is no performance hit and you can be a lot more
flexible in your coding.

N o t e

PHP assumes the include files are in the directory specified by the include_path directive in the
php.ini file. If your include files are not in this directory you need to specify the full path along with
the filename to include it.

100 Chapter 5 ■ Operators, Statements, and Functions

Conclusion
You have covered a ton of information in this chapter. You now know all about operators
and how to control the flow of your code with sound logic. You also know how to create
blocks of reusable code using functions. You even know how to make a mini-library and
include it in all of your PHP pages.

Next up: arrays, and then your first PHP game!

Arrays, Games,
and Graphics

Chapter 6
Arrays! .103

Chapter 7
Playing with Chess and Databases .133

Chapter 8
GD Graphics Overview .157

Chapter 9
Creating Battle Tank and Using Dynamic Terrain 193

PART III

This page intentionally left blank

chapter 6

Arrays!

■ Initializing Arrays

■ Using Strings for Indexes

■ Looping through Sequential Arrays

■ Looping through Non-Sequential Arrays

■ Multi-Dimensional Arrays

■ Sorting Arrays

■ Your First PHP Game

In Chapter 4, when you were making the form processing example, the check boxes
were named nEquipmentID[]. Those two brackets mean that it is an array. An array
consists of several elements, each of which has a value. You can access each element

in the array by using an index. In PHP your index can be either an integer or a string,
which allows a lot of flexibility in your code.

N o t e

As in C/C++, arrays in PHP are zero based, meaning that the first index in the array starts at 0.

Take a look at Figure 6.1. This representation should make it clear how an array stores its
data.

103

104 Chapter 6 ■ Arrays!

$board[0] $board[1] $board[2] $board[3]

"A" "B" "C" "D"

Figure 6.1 How an array stores data.

In this case the array is named $board, and it has four elements. The first element of the
array, $board[0], is equal to “A”. The second element of the array, $board[1], is equal to “B,”
and so on. So how do you create arrays?

Initializing Arrays
There are several ways that you can initialize arrays. You could simply list the variable with
the value you would like to add to the array, like this:

$board[] = “A”:
$board[] = “B”:
$board[] = “C”:
$board[] = “D”:

Because you did not specify an index, the elements are automatically added in sequential
order. You could have also specified what index you would like the element to appear in,
like this:

$board[0] = “A”:
$board[1] = “B”:
$board[5] = “C”:
$board[7] = “D”:

This is more impractical, but valid all the same. Usually when assigning elements to an
array you should do it in a sequential order. This way there is no confusion about where
the element is. However, there are times when you will want to create a hash key and use
that for your index.

If you ever assign items in a non-sequential order and then later add an element to the
array without specifying the index it should appear in, then the element will be automat-
ically added to the next highest index. For example:

$board[0] = “A”:
$board[1] = “B”:

Using Strings for Indexes 105

$board[60] = “C”:

$board[] = “D”: // “D” would be added to index 61, not 2.

The final way to declare an array is to use the array() function. You simply pass the values
you want in the array as parameters to the function.

$board = array(“A”, “B”, “C”, “D”);

This will create an array exactly like the first example did. “A” is the first element in the
array with an index of 0. “B” is the second element in the array with an index of 1, and so
on. If you wish to change the index of an element using the array() function, you can do
so like this:

$board = array(1 => “a”, “b”, 7 => “c”, “d”);

In the example above, “a” will be at index 1, “b” will be located at index 2, “c” will be
located at index 7, and “d” will be located at index 8. You can put the => operator before
any element of the array to change its index.

Using Strings for Indexes
As mentioned earlier in this chapter, you can use strings as indexes into your arrays. The
global variable _SESSION in PHP uses strings as its indexes. The syntax for accessing an
array that uses strings as an index looks like this:

_SESSION[“gTurn”];

Creating an array that uses strings for an index is very simple. Recall the first example I
used to initialize an array with elements in a specific index.

$board[0] = “A”:
$board[1] = “B”:
$board[5] = “C”:
$board[7] = “D”:

Instead of using an integer as an index you would simply replace it with a string, as the
following example demonstrates:

$board[“element1”] = “A”:
$board[“element2”] = “B”:
$board[“element3”] = “C”:
$board[“element4”] = “D”:

106 Chapter 6 ■ Arrays!

You can also use the => operator along with the array() function to create an array with
strings as indexes.

$board = array(“element1” => “A”, “element2” => “B”,
“element3” => “C”, “element4” => “D”);

If you use strings as indexes into your array, you have to access the array with the speci-
fied string indexes. In other words, if you typed in the following code:

<?php
$board = array(“element1” => “A”, “element2” => “B”,

“element3” => “C”, “element4” => “D”);
echo($board[“element1”]);
echo($board[0]);
?>

You would get an error when the PHP interpreter tried to print the last line,
echo($board[0]”), that looks like Figure 6.2.

Looping through Sequential Arrays
The easiest way to loop through sequential arrays is to use the for loop. I know you are
probably thinking, “How do I know how many elements are in the array?” You can access

Figure 6.2 Trying to access a string-indexed array with an integer.

Looping through Sequential Arrays 107

the number of elements in the array by using the count() function. Your for loop should
look like the following:

<?php

$board = array(“a”, “b”, “c”, “d”);

for($index = 0; $index < count($board); $index++)

{

// Print each element on its own line
echo(“Index = “ . $index . “, Element = “ . $board[$index] . “
”);

}
?>

First you initialize your array with all the elements you need. Then, in the first statement
of the for loop, you initialize your indexing variable ($index). The second statement of the
for loop is your Boolean expression. This tells the loop when to stop; in this case the for
loop will stop when it reaches one less than the total number of elements in the array
$board. Why don’t you specify to stop when the loop reaches the total count of the ele-
ments? Because you have to remember that PHP uses a starting index of zero for arrays.
If you went to the total count of the elements you would get an error when you tried to
print the value because that index does not exist in the array. The third and final statement
of the for loop simply increments the indexing variable every time the loop restarts. The
results should look like Figure 6.3.

Figure 6.3 Results of looping through a sequential array.

108 Chapter 6 ■ Arrays!

Looping through the array with a for loop is perfect, as long as you know that the array is
zero-based and ordered sequentially. So how do you loop through an array that is not
ordered sequentially?

Looping through Non-Sequential Arrays
This is a perfect time to use a while loop. Of course, you will be using the while loop in
conjunction with three other functions: reset(), list(), and each(). The reset function sets
the current index of the array back to the first element available. It takes one argument,
and that is the array that you would like to reset.

reset($someArray);

The list function takes two parameters: a variable to store the index of the element and a
variable to store the value of the element.

list($index, $value);

The function each() takes one argument, and that is the array you wish to iterate on.

each($someArray);

Take a look at the following example of how to use these three functions together in a
while loop to iterate through a non-sequential array.

<?php

$board = array(“a”, 7 => “b”, 25 => “c”, 50 => “d”);

reset($board);

while(list($index, $value) = each($board))

{

echo(“Index = “ . $index . “, Element = “ . $value . “
”);
}
?>

The results of the example above appear exactly like Figure 6.3, even though the indexes
in this particular array are not in a sequential order. Calling the reset() function in this
example is quite unnecessary because, since the array has just been created, the current
index is obviously the first available element. But it is good practice to get into, because
you might end up trying to loop through an array and it could be starting in the middle
of it, and that would be no good.

Looping through Non-Sequential Arrays 109

PHP also offers several other functions to operate on arrays, such as current(), key(),
next(), and prev() to name just a few. For a complete list of functions that PHP supports,
please refer to Appendix B. Take a look at the following example and Figure 6.4 to see what
the key() and current() functions do:

<?php

$board = array(“a”, “b”, “c”, “d”);

$index = key($board);

$value = current($board);

echo(“Index = “ . $index . “, Element = “ . $value . “
”);

?>

N o t e

Key and index mean exactly the same thing; the function in PHP is called key() instead of index().

Figure 6.4 An example of the key() and current() functions.

110 Chapter 6 ■ Arrays!

Earlier I mentioned next() and prev(). These two functions are another way to navigate
through an array. As you might imagine, next() goes to the next available index in the
array, and returns the element. prev() does the same thing but instead of going to the next
available index, it goes to the previous index. Take a look at the following loop:

<?php

$board = array(“a”, “b”, “c”, “d”);

reset($board);

for($i = 0; $i < 4; $i++)

{

$index = key($board);
$value = current($board);

next($board);
echo(“Index = “ . $index . “, Element = “ . $value . “
”);

}

This will print the same results to the browser as Figure 6.3 did, but it does so in a differ-
ent way. But be careful if you use the next() and prev() functions. Remember I said it
returns the value of the element of the next index in the array? Well, what if the value is
0? Take a look at this example:

<?php
$board = array(3, 0, 2, 4);
do
{

$index = key($board);
$value = current($board);
echo(“Index = “ . $index . “, Element = “ . $value . “
”);

} while(next($board));
?>

This loop will stop when it gets to the second element of the array because the while state-
ment will evaluate to false. So be very careful if you use the next() and prev() functions. If
you ever run into a loop that is stopping abruptly, take a look to make sure that your
Boolean expression isn’t being evaluated to false.

Multi-Dimensional Arrays
Creating multi-dimensional arrays in PHP is very similar to creating multi-dimensional
arrays in C/C++. In C/C++ you have support for single-dimension arrays, but you create
a multi-dimensional array by nesting an array as an element in a parent array. This is

Multi-Dimensional Arrays 111

exactly how you create multi-dimensional arrays in PHP. You make an array that holds an
array.

<?php
$board = array(“Row1” => array(“a”, “b”), “Row2” => array(“c”, “d”, “e”));
echo($board[“Row1”][0]); // Prints “a”
echo($board[“Row2”][2]); // Prints “e”
?>

One great use for multi-dimensional arrays is that you can represent a game board using
a two-dimensional array. Then each position in the game board, at say location e1, would
hold a value that would tell you if there is a piece at that square or not. Or you could use
a loop, like in the following example, to print the game board:

<?php

$board = array(array(“r”, “k”, “b”, “q”, “k”, “b”, “k”, “r”),

array(“p”, “p”, “p”, “p”, “p”, “p”, “p”, “p”),

array(“ ”, “ ”, “ ”, “ ”, “ ”,

“ ”, “ ”, “ ”),
array(“ ”, “ ”, “ ”, “ ”, “ ”,

“ ”, “ ”, “ ”),
array(“ ”, “ ”, “ ”, “ ”, “ ”,

“ ”, “ ”, “ ”),
array(“ ”, “ ”, “ ”, “ ”, “ ”,

“ ”, “ ”, “ ”),
array(“p”, “p”, “p”, “p”, “p”, “p”, “p”, “p”),
array(“r”, “k”, “b”, “q”, “k”, “b”, “k”, “r”));

echo(“<table border=1 cellpadding=2 cellspacing=0 width=250>”);

for($yIndex = 0; $yIndex < count($board); $yIndex++)

{

echo(“<tr>”);

for($xIndex = 0; $xIndex < count($board[$yIndex]); $xIndex++)

{

echo(“<td align=center valign=middle>” .

$board[$yIndex][$xIndex] . “</td>”);

}

echo(“</tr>”);

}
echo(“</table>”);
?>

The results of this loop look like Figure 6.5.

112 Chapter 6 ■ Arrays!

Figure 6.5 Results of looping through a multi-dimensional array.

Sorting Arrays
PHP provides tons of functions with which you can manipulate the arrays. Some of the
handiest are the sorting functions. Take a look at Table 6.1 to see the list of sorting functions.

Sorting Functions

Function Name Description

sort()

asort()

rsort()

arsort()

ksort()

krsort()

usort() A customizable sort function.
uasort()

uksort()

Table 6.1

Sorts arrays in alphabetical order.
Sorts arrays in alphabetical order without changing indexes.
Sorts arrays in reverse order.
Sorts arrays in reverse order without changing indexes.
Sorts arrays by key values.
Sorts arrays by key values in reverse order.

A customizable sort function that keeps string indices.
A customizable sort function that sorts by key.

*A complete list of PHP functions is available in Appendix B.

Sorting Arrays 113

Now take a closer look at each of these sorting functions. The sort() function sorts the ele-
ments in the array by numeric and then alphabetical order. Numbers come first, then
punctuation marks, and finally letters. While the function is sorting, it reassigns the
indexes to reflect the new order.

<?php
$items = array(“Sword”, “Medpac”, “Advanced Medpac”,

“Armor”, “Blaster”, “Shotgun”);

// Print the unsorted items

for($index = 0; $index < count($items); $index++)

{

echo(“Index = “ . $index . “, “ . $items[$index] . “
”);
}

// Print the sorted items

sort($items);

for($index = 0; $index < count($items); $index++)

{

echo(“Index = “ . $index . “, “ . $items[$index] . “
”);
}
?>

The results of this example should look like Figure 6.6.

Figure 6.6 The sort() function in action.

114 Chapter 6 ■ Arrays!

Take a look at what happens when you have an array with specified indexes when you use
the sort function.

<?php
$items = array(“Item1” => “Sword”, “Item2” => “Medpac”, “Item3” => “Advanced Medpac”,

“Item4” => “Armor”, “Item5” => “Blaster”, “Item6” => “Shotgun”);

// Print the unsorted items
while(list($index, $value) = each($items))
{

echo(“Index = “ . $index . “, “ . $value . “
”);
}
echo(“
”);
// Print the sorted items
sort($items);
while(list($index, $value) = each($items))
{

echo(“Index = “ . $index . “, “ . $value . “
”);
}
?>

If you use the sort function with specified indexes, like in the example above, it will lose
its indexes. Take a look at Figure 6.7 to see the results.

Figure 6.7 The sort() function with specified indexes.

Sorting Arrays 115

To avoid losing your specified string indices you need to use the asort() function. This will
sort the array and its elements without taking away your string indices. If you wanted to sort
this array in reverse you would use the rsort() function. However, the rsort() function will
also lose specified string indices, so to sort an array in reverse with string indices you need
to use the arsort() function. You can also sort by your string indices by using ksort().

<?php

$items = array(“Item6” => “Sword”, “Item5” => “Medpac”, “Item3” => “Advanced Medpac”,

“Item4” => “Armor”, “Item2” => “Blaster”, “Item1” => “Shotgun”);

// Print the unsorted items

while(list($index, $value) = each($items))

{

echo(“Index = “ . $index . “, “ . $value . “
”);
}
echo(“
”);
// Print the sorted items
ksort($items);
while(list($index, $value) = each($items))
{

echo(“Index = “ . $index . “, “ . $value . “
”);
}
?>

The results of this example look like Figure 6.8.

Figure 6.8 The ksort() function in action.

116 Chapter 6 ■ Arrays!

N o t e

You can sort in reverse order by key by using the krsort() function.

The last of the sorting functions for arrays has to be the coolest. With usort() you can
organize your arrays however you want. The usort() function takes two arguments: the
first is the array you would like to sort, and the second is a name of a function that con-
tains your own sorting logic.

usort(someArray, someFunction);

The following example will sort the array $items by the length of each string:

<?php

function SortByLength($element1, $element2)

{

$lengthOfElement1 = strlen($element1);

$lengthOfElement2 = strlen($element2);

if($lengthOfElement1 == $lengthOfElement2)

return 0;
return ($lengthOfElement1 < $lengthOfElement2) ? -1 : 1;
}

$items = array(“Item6” => “Sword”, “Item5” => “Medpac”, “Item3” => “Advanced Medpac”,
“Item4” => “Armor”, “Item2” => “Blaster”, “Item1” => “Shotgun”);

// Print the unsorted items
while(list($index, $value) = each($items))
{

echo(“Index = “ . $index . “, “ . $value . “
”);
}
echo(“
”);
// Print the sorted items
usort($items, ‘SortByLength’);
while(list($index, $value) = each($items))
{

echo(“Index = “ . $index . “, “ . $value . “
”);
}
?>

The results of the above example are displayed in Figure 6.9.

Your First PHP Game 117

Figure 6.9 The usort() function in action.

C a u t i o n

Make sure you pass the function name to usort() as a string; otherwise you will get a warning dis-
play in the middle of your page.

Your First PHP Game
Now it’s time to program your first game in PHP! You will start off with a simple game of
tic-tac-toe. This game will use all the aspects that you have learned in all the previous
chapters. It contains session variables, arrays, functions, and PHP working together with
HTML.

The first step you need to take to set up a new game is to create a directory for it inside
your Web server. For IIS the directory would be C:\Inetpub\wwwroot, and if you are using
an Apache Web server the directory would be /usr/web. If you are on Windows the Apache
directory would look something like C:\Apache depending on where you installed
Apache. You can name the directory whatever you like. I am going to name it tictactoe.

118 Chapter 6 ■ Arrays!

Now that you have a directory set up you can create a new PHP file. I recommend fol-
lowing a regular naming scheme. The default page in a directory should be named
index.php or default.php. You can use whichever you like. Since the game will only be in
one file I will just name it index.php.

The next step you need to take is to define all of your constants and globals, and include
the common functions file that you use in all of your games. The first set of constants that
you need is four game states. The first of the four states is to tell you when the game is
starting, the second lets you know when the game is in play, the third tells you if someone
has won the game, and the fourth and final state tells you if someone has lost the game.

// Includes
include(“common.php”);
// Game States
define(“GAME_START”, 0);
define(“GAME_PLAY”, 1);
define(“GAME_WIN”, 2);
define(“GAME_OVER”, 3);

For tic-tac-toe, the only other two defines needed are one for the “X” image and one for
the “O” image.

// Images

define(“X_IMAGE”, “images/X.gif”);

define(“O_IMAGE”, “images/O.gif”);

The only reason you define these is because it makes it easy if you want to change the
images later, plus it saves you some typing when you create the render function to display
your board to the browser. You will also need three global variables for all of your func-
tions to use. The first stores what state the game is in, the second stores the state of the
board, and the third stores the difficulty level of the computer A.I.

// Globals
global $gGameState;
global $gBoard;
global $gDifficulty;

Now that the global information for the game is defined, you will set up the HTML frame-
work for the game. The HTML framework is the form you will use to get user input for
your game. The following is all the HTML you will need for the game:

<!doctype html public “-//W3C//DTD HTML 4.0 //EN”>
<html>

Your First PHP Game 119

<head>
<title>Tic-Tac-Toe</title>
<link rel=”stylesheet” href=”style.css” type=”text/css”>

</head>

<body>

<form action=”index.php” method=”post”>

<input type=”hidden” name=”turn” value=”<? printf($turn) ?>”>

<?php WriteTableHeader(); ?>
<div align=”center”>
<input type=”submit” name=”btnNewGame” value=”New Game”>

Difficulty Level
<select name=”dlDifficulty”>

<option value=”1”>Easy</option>
<option value=”2” SELECTED>Normal</option>
<option value=”3”>Not-Likely</option>

</select>

<?php

// Render the game

Render();

?>

</div>

<?php WriteTableFooter(); ?>

</form>

</body>
</html>

N o t e

Remember that all of this code is provided for you on the CD.

The framework for the game is very simple; the form is redirecting back to itself. Then the
header for the cool table layout is written. After that, some form elements are created. One
allows the user to start a new game, and the drop-down box is used to choose the diffi-
culty level of the computer A.I. After all that, the render function is called. Because you
don’t yet have a render function, you’ll need to create one now.

The render function needs to determine what state the game is in by using the global game
state variable that was declared earlier. If the state of the game is starting, then the render
function needs to start a new game and change the state to playing. If the state of the game

120 Chapter 6 ■ Arrays!

is playing then the render function needs to take the user input, process it, calculate the
move for the computer, and update the board. If one of the players has won the game, the
render function needs to tell the user that he either has won or lost the game.

As you can see, the render function needs to do a ton of work. To accomplish all these
tasks the render function will need some helper functions. You will need a function to
start a new game, a function to draw the board, a function to check for a win, a function
to check to see if the board is full, and, finally, a function to end the game and free your
session. Let’s start off with the render function itself and then continue on to the child
functions that render() will call.

function Render()
{

global $gGameState;
global $gBoard;
global $gDifficulty;

switch($gGameState)
{

case GAME_PLAY:

{

// Get the move if the user made one

if($_POST[‘btnMove’] != “”)

{

$gBoard[$_POST[‘btnMove’]] = “x”;

$_SESSION[‘gBoard’] = $gBoard;

}

// Check for a win

if(CheckWin() == “X”)

{

$gGameState = GAME_WIN;

Render();

return;

}

// Check to see if the board is full

if(CheckFull() == 1)

{

$gGameState = GAME_OVER;

Render();

return;

Your First PHP Game 121

}
// Compute the computer’s move if we can still move
if($gGameState == GAME_PLAY && $_POST[‘btnMove’] != “”)
{

if($gDifficulty == 1)

{

ComputerRandomMove();

}

elseif($gDifficulty == 2)

{

$computerMove = ComputerMove();

if($computerMove == “”)

{

ComputerRandomMove();

}

else

{

$gBoard[$computerMove] = “o”;
$_SESSION[‘gBoard’] = $gBoard;

}

}

elseif($gDifficulty == 3)

{

$computerMove = ComputerMove();
if ($computerMove == ‘’)
{

if($gBoard[4] == ‘’)
$computerMove = 4;

elseif($gBoard[0] == ‘’)
$computerMove = 0;

elseif($gBoard[2] == ‘’)
$computerMove = 2;

elseif($gBoard[6] == ‘’)
$computerMove = 6;

elseif($gBoard[8] == ‘’)
$computerMove = 8;

if($computerMove == ‘’)
ComputerRandomMove();
}

}

122 Chapter 6 ■ Arrays!

}

// Check for a win

if(CheckWin() == “O”)

{

$gGameState = GAME_OVER;

Render();

return;

}

// Check to see if the board is full

if(CheckFull() == 1)

{

$gGameState = GAME_OVER;

Render();

return;

}

// Draw the board

DrawBoard();

break;

}

case GAME_WIN:

{

EndGame();
printf(“

<img src=\”images/youWin.jpg\”

border=\”0\”>”);
break;

}

case GAME_OVER:

{

EndGame();
printf(“

<img src=\”images/gameOver.jpg\”

border=\”0\”>”);
break;

}

}

// Update our game state

$_SESSION[‘gGameState’] = $gGameState;

}

Your First PHP Game 123

if($_POST[‘dlDifficulty’] != “”)
{

$gDifficulty = $_POST[‘dlDifficulty’];

EndGame();

$gGameState = GAME_START;
StartGame();

}

if($gGameState == GAME_START)
{

StartGame();
}

// Check to see if the user is starting a new game

if($_POST[‘btnNewGame’] != “”)

{

EndGame();

$gGameState = GAME_START;
StartGame();

}

As you can see, a switch statement is used to determine the state of the game. You also may
have noticed that there is not a state for the game starting; this is because all of the game
start events take place outside of the render function. The game checks to see if the New
Game button has been clicked or if the difficulty level has been changed every time the
page is loaded. That is what the three if statements that live outside of the render function
are used for.

Here is a complete list of the functions that still need to be created.

■ StartGame()

■ EndGame()

■ DrawBoard()

■ CheckWin()

■ CheckFull()

■ ComputerRandomMove()

■ ComputerMove()

124 Chapter 6 ■ Arrays!

The StartGame() and EndGame() functions control the session variables. The StartGame()
function creates all the variables that will be stored in the session and changes the game
state to play. The EndGame() function simply unsets all the variables and destroys the active
session.

function StartGame()
{

global $gGameState;
global $gBoard;

if($gGameState == GAME_START)

{

$gGameState = GAME_PLAY;

}

// use $_SESSION instead of session_register due to security issues

session_start();

$turn = $_SESSION[‘turn’];

if(!isset($turn))

{

$turn = 1;

$gBoard = array(“”,””,””,””,””,””,””,””,””);

$_SESSION[‘gGameState’] = $gGameState;

$_SESSION[‘gBoard’] = $gBoard;

$_SESSION[‘gDifficulty’] = $gDifficulty;

$_SESSION[‘turn’] = $turn;

}

// Retrieve the board state

$gBoard = $_SESSION[‘gBoard’];

// Get the difficulty level
$gDifficulty = $_SESSION[‘gDifficulty’];

}

function EndGame()
{

global $gGameState;
global $gBoard;

$gGameState = GAME_OVER;

unset($gBoard);

Your First PHP Game 125

unset($gGameState);

unset($turn);

session_destroy();

}

The first lines of the StartGame() function tell it that the function will use global variables.
Then the function changes the game state and starts the session. Starting the session cre-
ates a new file in the directory where the sessions are stored, which is specified in the
php.ini file. After the session is started it checks to see if the $turn variable has been set. If
it has, then it doesn’t bother to create new session variables, but if it hasn’t been set then
the function creates the array for the board, a session variable to store the game state, a
session variable to store the state of the board, and a session variable to store the difficulty
level; finally, it sets the variable $turn.

The first lines of the EndGame() function also tell it what global variables it should use. Then
the function changes the game state to game over. After the game state has been changed,
it unsets all of the variables and destroys the session.

DrawBoard() simply draws the board. Fantastic, isn’t it? It uses HTML and PHP together to
write out the appropriate board to the browser.

function DrawBoard()
{

global $gBoard;

// Start the table

printf(“<table border=0 cellpadding=0 cellspacing=0>”);

$iLoop = 0;

for($iRow = 0; $iRow < 5; $iRow++)

{

printf(“<tr>\n”);

for($iCol = 0; $iCol < 5; $iCol++)

{

if($iRow == 1 || $iRow == 3)

{

printf(“<td width=\”12\” height=\”5\”

align=\”center\” valign=\”middle\”

bgcolor=\”#000000\”> </td>\n”);

}

else

{

if($iCol == 1 || $iCol == 3)

{

126 Chapter 6 ■ Arrays!

printf(“<td width=\”12\” height=\”115\” align=\”center\”
valign=\”middle\” bgcolor=\”#000000\”> </td>\n”);

}
else
{

printf(“<td width=\”115\” height=\”115\”
align=\”center\” valign=\”middle\”>”);

if($gBoard[$iLoop] == “x”)
{

printf(“”);
}
elseif($gBoard[$iLoop] == “o”)
{

printf(“”);
}
else
{

printf(“<input type=\”submit\” name=\”btnMove\” \ value=\”” .
$iLoop . “\”>”);

}

printf(“</td>\n”);

$iLoop++;

}

}

}

printf(“</tr>\n”);

}

// End the table
printf(“</table>”);

}

The DrawBoard() function uses only one global—the board itself. It has two nested loops;
the first loop is the number of rows in the table that should be rendered, and the second
loop is the number of columns in each row that should be rendered. If the count of $iCol
is 1 or 3, then it draws the divider between the squares; otherwise it checks to see if there
is a piece on the board in that particular row and that particular column. If there is a piece
it renders it to the browser; otherwise it puts in a button.

The next two functions, CheckFull() and CheckWin(), check to see if the board is full or if
someone has won the game.

Your First PHP Game 127

function CheckFull()
{

global $gGameState;
global $gBoard;

$gGameState = GAME_OVER;

for($iLoop = 0; $iLoop < count($gBoard); $iLoop++)

{

if($gBoard[$iLoop] == “”)
{

$gGameState = GAME_PLAY;

return 0;

}

}

return 1;
}
function CheckWin()
{

global $gGameState;

global $gBoard;

$player = 1;

while($player <= 2)

{

if ($player == 1)

$tile = “o”;

else

$tile = “x”;

if (

horizontal

($gBoard[0] == $tile && $gBoard[1] == $tile &&

$gBoard[2] == $tile) ||($gBoard[3] == $tile && $gBoard[4] == $tile &&
$gBoard[5] == $tile) ||

($gBoard[6] == $tile && $gBoard[7] == $tile &&
$gBoard[8] == $tile) ||

vertical

($gBoard[0] == $tile && $gBoard[3] == $tile &&

$gBoard[6] == $tile) ||

($gBoard[1] == $tile && $gBoard[4] == $tile &&

$gBoard[7] == $tile) ||

($gBoard[2] == $tile && $gBoard[5] == $tile &&

$gBoard[8] == $tile) ||

128 Chapter 6 ■ Arrays!

diagonal

($gBoard[0] == $tile && $gBoard[4] == $tile &&

$gBoard[8] == $tile) ||

($gBoard[2] == $tile && $gBoard[4] == $tile &&

$gBoard[6] == $tile))

{

return strtoupper($tile);

}

$player++;

}
}

The CheckFull() function starts off assuming that the game is finished. It then loops
through each square on the board checking to see if there is a blank square. If the
CheckFull() function finds a blank square it sets the game state back to play.

The CheckWin() function checks three tiles in a row for each player. It first checks to see if
there are three horizontal tiles in a row with the same marker in them. It does the same
exact procedures for three vertical tiles in a row and for three diagonal tiles in a row. If any
of these tests evaluate to true, then the winning tile is returned to the render function.

The final two functions deal with the computer A.I. ComputerRandomMove() and
ComputerMove() both calculate where the computer should place its piece. ComputerRandom-
Move() is used for the easiest difficulty level and ComputerMove() is used for the normal and
impossible difficulty levels.

function ComputerRandomMove()
{

global $gBoard;
$computerMove = “”;

srand((double) microtime() * 1000000);

while($computerMove == “”)

{

$test = rand(0, 8);

if($gBoard[$test] == “”)

{

$computerMove = $test;

$gBoard[$computerMove] = “o”;

$_SESSION[‘gBoard’] = $gBoard;

}
}

}

Your First PHP Game 129

function ComputerMove()
{

global $gBoard;
$computerMove = “”;

for($player = 0; $player <= 1; $player++)
{

if($player == 0)

{

$tile = “o”;

}

else

{

$tile = “x”;

}

if ($gBoard[0] == $tile && $gBoard[1] == $tile &&
$gBoard[2] == ‘’)

$computerMove = 2;
if ($gBoard[0] == $tile && $gBoard[1] == ‘’ && $gBoard[2] == $tile)

$computerMove = 1;
if($gBoard[0] == ‘’ && $gBoard[1] == $tile &&

$gBoard[2] == $tile)
$computerMove = 0;

if($gBoard[3] == $tile && $gBoard[4] == $tile &&
$gBoard[5] == ‘’)

$computerMove = 5;
if($gBoard[3] == $tile && $gBoard[4] == ‘’ &&

$gBoard[5] == $tile)
$computerMove = 4;

if($gBoard[3] == ‘’ && $gBoard[4] == $tile &&
$gBoard[5] == $tile)

$computerMove = 3;

if($gBoard[6] == $tile && $gBoard[7] == $tile &&

$gBoard[8] == ‘’)

$computerMove = 8;

if($gBoard[6] == $tile && $gBoard[7] == ‘’ &&

$gBoard[8] == $tile)

$computerMove = 7;

if($gBoard[6] == ‘’ && $gBoard[7] == $tile &&

$gBoard[8] == $tile)

$computerMove = 6;

130 Chapter 6 ■ Arrays!

if($gBoard[0] == $tile && $gBoard[3] == $tile &&
$gBoard[6] == ‘’)

$computerMove = 6;
if($gBoard[0] == $tile && $gBoard[3] == ‘’ &&

$gBoard[6] == $tile)
$computerMove = 3;

if($gBoard[0] == ‘’ && $gBoard[3] == $tile &&
$gBoard[6] == $tile)

$computerMove = 0;

if($gBoard[1] == $tile && $gBoard[4] == $tile &&
$gBoard[7] == ‘’)

$computerMove = 7;
if($gBoard[1] == $tile && $gBoard[4] == ‘’ &&

$gBoard[7] == $tile)
$computerMove = 4;

if($gBoard[1] == ‘’ && $gBoard[4] == $tile &&
$gBoard[7] == $tile)

$computerMove = 1;
if($gBoard[2] == $tile && $gBoard[5] == $tile &&

$gBoard[8] == ‘’)
$computerMove = 8;

if($gBoard[2] == $tile && $gBoard[5] == ‘’ &&
$gBoard[8] == $tile)

$computerMove = 5;
if($gBoard[2] == ‘’ && $gBoard[5] == $tile &&

$gBoard[8] == $tile)
$computerMove = 2;

if($gBoard[0] == $tile && $gBoard[4] == $tile &&
$gBoard[8] == ‘’)

$computerMove = 8;
if($gBoard[0] == $tile && $gBoard[4] == ‘’ &&

$gBoard[8] == $tile)
$computerMove = 4;

if($gBoard[0] == ‘’ && $gBoard[4] == $tile &&
$gBoard[8] == $tile)

$computerMove = 0;

if($gBoard[2] == $tile && $gBoard[4] == $tile &&
$gBoard[6] == ‘’)

$computerMove = 6;

Your First PHP Game 131

if($gBoard[2] == $tile && $gBoard[4] == ‘’ &&

$gBoard[6] == $tile)

$computerMove = 4;

if($gBoard[2] == ‘’ && $gBoard[4] == $tile &&

$gBoard[6] == $tile)

$computerMove = 2;

if($computerMove <> ‘’)

break;

}

return $computerMove;
}

ComputerRandomMove() simply calculates a random number from the server’s timer. Once
it gets this random number it tests to see if that square is blank. If the tested square
is blank, then the computer puts its piece in that square. If the square tested is not blank,
ComputerRandomMove() is run again until an empty square is found.

ComputerMove() looks at every single square on the board. If there are two tiles in a row with
the opposing tile in them, the computer will place its tile on the third open square, thus
blocking the opponent. This level of difficulty is increased in the render function with the
following lines:

$computerMove = ComputerMove();

if ($computerMove == ‘’)

{

if($gBoard[4] == ‘’)

$computerMove = 4;

elseif($gBoard[0] == ‘’)

$computerMove = 0;
elseif($gBoard[2] == ‘’)

$computerMove = 2;
elseif($gBoard[6] == ‘’)
$computerMove = 6;
elseif($gBoard[8] == ‘’)
$computerMove = 8;
if($computerMove == ‘’)
ComputerRandomMove();
}

First it calculates the computer’s move. If the computer’s move is blank it tries to pick the
first available square. If it doesn’t find an available square it randomly calculates the move.
With these three methods of calculating moves, it is nearly impossible to win. It makes for
a great challenge.

132 Chapter 6 ■ Arrays!

Figure 6.10 Your first PHP game!

Congratulations! You have successfully completed your very first PHP game. The results
of your efforts should look like Figure 6.10.

N o t e

At this point you will want to go into your php.ini file and turn display_errors to off. The reason for
this is because you only want to display errors when debugging; otherwise you will have warning
notices all over the place that really don’t affect the gameplay.

Conclusion
You have covered your last basic concept in PHP—arrays. You learned how to initialize
arrays, use strings for indexes, loop through arrays, create multi-dimensional arrays, and
sort your arrays. You have also created your very first PHP game. It can only get more
exciting from here. Next you will take a tour through databases and create your very own
chess game. I know that tic-tac-toe was a lot of fun but not very difficult. It is time to really
test your skills.

chapter 7

Playing with Chess
and Databases

■ Non-Relational Databases

■ Creating and Opening a Database

■ Looping through Databases

■ Modifying Your Database

■ Chess Programming Basics

■ Starting Your Chess Game

■ Working with the Pieces

■ Adding the Database

What is a database? A database provides persistent storage for information.
There are three types of databases: relational databases, non-relational data-
bases, and object oriented databases. In a relational database the data is

stored in a set of tables and the information is related to each other by some unique iden-
tifier. Some examples of a relational database system are mySQL, SQL Server, and Oracle.
Relational databases typically use a language called T-SQL to access the information
inside a table.

Object oriented databases use objects to represent data much like you would if you were cre-
ating classes and objects to represent your program’s internal data. Object oriented databases
are fairly new, so the algorithms for searching aren’t as well defined as a relational database,
but this type of database gives great promise to the object oriented development community.
Some of the most popular object oriented databases are Versant (www.versant.com), Gem-
Stone (www.gemstone.com), and ObjectStore (www.odi.com/odilive/).

133

134 Chapter 7 ■ Playing with Chess and Databases

For your purposes with this book you will use a non-relational database. Non-relational
databases use files to store their information. They are called non-relational databases
because the stored data is not related to any other data. Pretty logical name, if you ask me.

Non-Relational Databases
As mentioned, a non-relational database stores its information in files. So how does it do
this? PHP supports something called DBA. DBA stands for database abstraction, and this
can handle many different database formats. When a non-relational database stores its
data, it stores it in a key/value pair. In other words, each stored entry consists of a value
with an associated key. These key/value pairs are simple strings, not char arrays, so you can
also store binary information in these databases. You are not limited to the keys that you
can choose because the keys are not stipulated by the database.

DBA allows you to create databases; update existing databases; insert, update, and delete
new entries; and traverse the entire database. The biggest bonus for you is that non-rela-
tional databases don’t require any additional software. All you have to do is enable DBA
support in the PHP interpreter by editing the php.ini file. This should already be com-
pleted; you went through this step when you installed the PHP interpreter.

Creating and Opening a Database
PHP provides several functions for DBA. The first function you must know is the
dba_open() function. This will allow you to create a database, write to a database, read a
database, or truncate a database.

int dba_open(string sPath, string sMode, string sHandler, [int nMod]);

The first parameter of the dba_open() function is the path to the database; the second
parameter is the mode in which you wish to open the database. Possible values for this can
be any of the following:

■	 r – Open the database for reading.

■	 w – Open the database for writing.

■	 c – Create a new database.

■	 n – Truncate a database.

The third parameter is the name of the handler for the type of database you would like to
use. The third parameter can be any of the following values:

■	 dbm – Berkley DB-style database (deprecated).

■	 ndbm –A newer Berkley DB-style database. This is very limited and is also

deprecated.

Creating and Opening a Database 135

■	 gdbm –The GNU database.

■	 db3 – The DB3 database toolkit from Sleepycat Software. This will be the database
type that you will use in your projects.

■	 cdb – Qmail database. This format only supports reading operations.

The optional fourth parameter specifies the mode in which the database should open.
This is not a commonly used parameter and you won’t be using it in your games.

The dba_open() function will return a handle for the database if it was successful; otherwise
it returns 0 or false when it fails. This will allow you to verify that the database is open. If
the open fails you can trap for it and either print a warning message or exit the applica-
tion altogether. Take a look at the following code example to see how to use the dba_open()
function.

<?php
// Set the db parameters
$dbPath = “myDatabase.db”;
$dbType = “db3”;

function CreateDatabase($thePath, $theType)
{

$db = dba_open($thePath, “c”, $theType);
if(!$db)
{

printf(“Could not create the database”);

return 0;

}

return $db;
}

function OpenDatabase($thePath, $theType)
{

$db = dba_open($thePath, “r”, $theType);
if(!$db)
{

printf(“Could not open the database”);

return 0;

}

return $db;
}

136 Chapter 7 ■ Playing with Chess and Databases

// Open the database, if it isn’t there, create it

$db = OpenDatabase($dbPath, $dbType);

if(!$db)

{

$db = CreateDatabase($dbPath, $dbType);

if(!$db)

{

exit;
}

}

// If you get here the database has opened successfully and you can do what you want

with it.

?>

Looping through the Database
Now that you know how to create and open a non-relational database it would be handy
to know how to loop through the data in the database to display it. To loop through a
database record set you need to start at the very first key. PHP provides you with
dba_firstkey() to get the first key of a specified database.

string dba_firstkey(int databaseHandle);

Once you retrieve the first key of the database you need to loop through each record until
there are no more records. For this you will use a while loop because you won’t know the
count of elements in the record set. To get the value, you use the dba_fetch() function.

string dba_fetch(string key, int databaseHandle);

The dba_fetch() function will return a string of false if it was unable to get the data. Once
you have retrieved the data you will need to unserialize the data, just like you will have to
serialize the data to put it into the database.

string unserialize(string someString);

After you have done this you can do what you want with the unserialized string. Then you
need to retrieve the next key in order to move to the next record. Take a look at the fol-
lowing example to see how it all works together:

<?php

$dbPath = “myDatabase.db”;

$dbType = “db3”;

$db = OpenDatabase($dbPath, $dbType);

Inserting an Entry into Your Database 137

if(!$db)
{

$db = CreateDatabase($dbPath, $dbType);
if(!$db)
{

exit;
}

}

// Get the first record

$key = dba_firstkey($db);

// Loop through the whole database

while($key != false)

{

$value = dba_fetch($key, $db);

$entry = unserialize($value);

// Do something with $entry

$key = dba_nextkey($db);

}
dba_close($db);
?>

N o t e

Remember to always close the database you’re working with by using the dba_close() function.

Inserting an Entry into Your Database
To insert an entry, PHP provides you with the dba_insert() function. This function takes
three arguments. The first is the key that you want to give the record, the second argument
is the value for the key, and the third argument is the handle to the database.

bool dba_insert(string key, string value, int handle);

If the insert to the database is successful dba_insert() will return true. If the insert into the
database fails dba_insert() will return false. When inserting a value into the database make
sure you serialize the data first.

$results = dba_insert($myKey, serialize($myData), $db);

All the serialize() function does is create a serialized string from a mixed data type that
you pass in to it, so you can pass in an array and the results will be a serialized string. Then
when you retrieve the data from the database, you unserialize the string by using the

138 Chapter 7 ■ Playing with Chess and Databases

unserialize() function. Take a look at the following code example to see how you put it
all together:

<?php

$dbPath = “myDatabase.db”;

$dbType = “db3”;

$data = “My Data”;

$db = OpenDatabase($dbPath, $dbType);

if(!$db)

{

$db = CreateDatabase($dbPath, $dbType);

if(!$db)

{

exit;
}

}
// Now that the database is open you need to find the next available key
$nextID = 0;
$key = dba_firstkey($db);
while($key != false)
{

if($key > $nextID)

{

$nextID = $key;

}

$key = dba_nextkey($db);

}
$nextID++; // This is the next largest available key
$result = $dba_insert($key, serialize($data), $db);
dba_close($db)

if(!$result)
{

printf(“Insert into database failed”);
}
else
{

printf(“Added successfully”);
}
?>

Updating an Entry in Your Database 139

So what is this example doing, exactly? First it opens the database using the functions that
you created earlier in this chapter. Once the database is opened, you need to find the next
available ID. This ensures that you are inserting your data at the end of the file. To do this
you need to get the first key in the database, then loop through the entire database until
you reach the end. If a key is found that is greater than the current $nextID then the
$nextID is set to the largest key. Once this loop is finished you have the largest key in
the database, so the next available key is obviously $nextID + 1. Now you can freely insert
your record into the database. Once you have called the dba_insert() function you need to
check to see if it is successful. That is all there is to it.

Updating an Entry in Your Database
Updating records in your database is very similar to inserting records, but instead of call-
ing dba_insert() you call dba_replace(). The dba_replace() function also takes three argu-
ments. Can you guess what they are? That’s right, the key you want to update, the data you
are going to update the record with, and the database handle.

bool dba_replace(string key, string data, int database);

Now, once you call this function you must call the dba_sync() function or else your data
will not be saved to the database. This can be a pain in the butt to debug if you miss
putting in this little function.

bool dba_sync(int database);

So, to update a record you start off exactly like you were inserting a record—you need to
open the database. But this time you do not need to find the next available record because
you already know what record you want to update. If you don’t know what record you
want to update then you probably shouldn’t be updating the database.

<?php

function UpdateRecord($id, $value)

{

global $dbPath, $dbType;
$db = OpenDatabase($dbPath, $dbType);
dba_replace($id, serialize($value), $db);
dba_sync($db);
dba_close($db)

}
?>

140 Chapter 7 ■ Playing with Chess and Databases

Deleting an Entry from Your Database
With the power to create, you also need the power to destroy. To delete an entry from your
database you use the dba_delete() function. Amazing name, isn’t it? The dba_delete() func-
tion takes two parameters. The first is the id of the record you wish to delete, and the sec-
ond is the handle to the database.

bool dba_delete(string key, int database);

Just like when you update the database, you must call the dba_sync() function or else your
database will not be updated. Take a look at this handy-dandy function.

<?php

function DeleteRecord($id)

{

global $dbPath, $dbType;
$db = OpenDatabase($dbPath, $dbType);

dba_delete($id, $db);
dba_sync($db);
dba_close($db)

}
?>

C a u t i o n

Remember to always call dba_close() after you are done operating on the database. And always
remember to call dba_sync() to update your database.

Chess Programming: A Quick Overview
Before you begin programming your chess game you need to understand how you would
go about it. Take a look at the minimum software requirements of a chess game.

■	 A way to represent a chess board in memory. This is where you will store the whole
state of the game.

■	 Some sort of system to determine if an illegal move was made.

■	 Some sort of user interface so you can make your moves.

Remember these are the bare minimum software components you would need to create a
chess game. This doesn’t include a move evaluation system so the computer can make
moves. Now that you have a good direction to go in to start programming a chess game,
take a look at how you would represent a board.

There are several ways of representing a chess board, but the most obvious way is to use
some sort of array to represent the board. Why an array? Because you want to have a vari-

Starting the Chess Game 141

able that you can loop through to render the board, and an array is the most logical data
structure. To make a move in chess you give the board a from square (e.g., a1) and a to
square (e.g., a3). If you are using an array, then you can loop through these columns and
rows and draw the board on the screen quite easily. Ideally you would use bit boards to
represent positions of pieces on the board itself.

A bit board is a 64-byte array that holds a bit. A 1 would be in a square if the square is taken
and a 0 would be in a square if the square is free. So you can represent an entire chess game
by using 12 bit boards. One for the position of all the white pawns, white rooks, white bish-
ops, white knights, white queen, white king, black pawns, and so on. With these bit boards
your validation of moves and calculations of moves will be a whole lot quicker than loop-
ing through one 64-byte array for the whole board. However, PHP does not support
64-bit integers so you cannot use bit boards unless you have a 64-bit system.

This is a very quick overview of chess programming. If you would like more in-depth
information about chess programming, check out other books on the subject. Let’s start
programming our chess game.

Starting the Chess Game
The first step you should take when starting any game is to create your game states and
general globals. For this chess game you will have only three game states. One tells you
when the game is starting, the second tells you the game is running, and the third tells you
when the game is over.

// Game States
define(“GAME_STARTING”, 1);
define(“GAME_RUNNING”, 2);
define(“GAME_OVER”, 3);
// Globals
global $gGameState;
global $gBoard;
global $gCurrentPlayer;

Now let’s create the HTML framework for the game. It should not be anything too fancy.
(As a matter of fact, it will be pretty much like the tic-tac-toe game you created in the last
chapter.)

<!doctype html public “-//W3C//DTD HTML 4.0 //EN”>

<html>

<head>

<title>Chess</title>
<link rel=”stylesheet” href=”style.css” type=”text/css”>

</head>
<body>

142 Chapter 7 ■ Playing with Chess and Databases

<form action=”chess.php” method=”post”>

<input type=”hidden” name=”player” value=”<? printf($gCurrentPlayer) ?>”>

<input type=”hidden” name=”turn” value=”<? printf($turn) ?>”>

<?php WriteTableHeader(); ?>
<div align=”center”>

<input type=”submit” name=”btnNewGame” value=”New Game”>
Move From:<input type=”text” name=”fromSquare”>

Move To:<input type=”text” name=”toSquare”>

<?php

// Render the game

Render();

?>

</div>

<?php WriteTableFooter(); ?>

</form>

</body>
</html>

This little chunk of HTML renders our cool framework—a button to start a new game, a
place to enter in your moves, and the rest of the game. Take a look at Figure 7.1 to see a
general layout of what the game will look like.

Figure 7.1 General layout of the chess game.

Working with the Pieces 143

Working with the Pieces
Now that you know how you generally want to lay out the chess game, you can create the
constants for the pieces and a few functions to move the pieces. Also you will want to cre-
ate the general render function to start out your game.

<?php

function Render()

{

global $gGameState;

global $gBoard;

switch($gGameState)
{

case GAME_RUNNING:

{

DrawBoard();

}

case GAME_OVER:

{

printf(“Game is Over”);
}

}

// Update our game state

$_SESSION[‘gGameState’] = $gGameState;

}

?>

<!—pieces.php —>

<?php

// Constants for piece definitions

define(“PAWN”, 0);

define(“KNIGHT”, 2);

define(“BISHOP”, 4);

define(“ROOK”, 6);

define(“QUEEN”, 8);

define(“KING”, 10);

define(“EMPTY_SQUARE”, 12);

// Stuff for the bitboards

define(“ALL_PIECES”, 12);define(“ALL_SQUARES”, 64);

define(“ALL_BITBOARDS”, 14);

// White pieces

144 Chapter 7 ■ Playing with Chess and Databases

define(“ALL_WHITE_PIECES”, ALL_PIECES);

define(“WHITE_PAWN”, PAWN);

define(“WHITE_KNIGHT”, KNIGHT);

define(“WHITE_BISHOP”, BISHOP);

define(“WHITE_ROOK”, ROOK);

define(“WHITE_QUEEN”, QUEEN);

define(“WHITE_KING”, KING);

// Black pieces

define(“ALL_BLACK_PIECES”, ALL_PIECES + 1);

define(“BLACK_PAWN”, PAWN + 1);

define(“BLACK_KNIGHT”, KNIGHT + 1);

define(“BLACK_BISHOP”, BISHOP + 1);

define(“BLACK_ROOK”, ROOK + 1);

define(“BLACK_QUEEN”, QUEEN + 1);

define(“BLACK_KING”, KING + 1);

// Piece Values

$pieceValues[WHITE_PAWN] = 100;

$pieceValues[WHITE_KNIGHT] = 300;

$pieceValues[WHITE_BISHOP] = 350;

$pieceValues[WHITE_ROOK] = 500;

$pieceValues[WHITE_QUEEN] = 900;

$pieceValues[WHITE_KING] = 2000;

$pieceValues[BLACK_PAWN] = 100;

$pieceValues[BLACK_KNIGHT] = 300;

$pieceValues[BLACK_BISHOP] = 350;

$pieceValues[BLACK_ROOK] = 500;

$pieceValues[BLACK_QUEEN] = 900;

$pieceValues[BLACK_KING] = 2000;

function StartBoard()

{

global $gBoard;

$gBoard = array(
BLACK_ROOK, BLACK_KNIGHT, BLACK_BISHOP, BLACK_QUEEN,

BLACK_KING, BLACK_BISHOP, BLACK_KNIGHT, BLACK_ROOK,
BLACK_PAWN, BLACK_PAWN, BLACK_PAWN, BLACK_PAWN,

BLACK_PAWN, BLACK_PAWN, BLACK_PAWN, BLACK_PAWN,
EMPTY_SQUARE, EMPTY_SQUARE, EMPTY_SQUARE, EMPTY_SQUARE,

EMPTY_SQUARE, EMPTY_SQUARE, EMPTY_SQUARE, EMPTY_SQUARE,

Working with the Pieces 145

EMPTY_SQUARE, EMPTY_SQUARE, EMPTY_SQUARE, EMPTY_SQUARE,
EMPTY_SQUARE, EMPTY_SQUARE, EMPTY_SQUARE, EMPTY_SQUARE,

EMPTY_SQUARE, EMPTY_SQUARE, EMPTY_SQUARE, EMPTY_SQUARE,
EMPTY_SQUARE, EMPTY_SQUARE, EMPTY_SQUARE, EMPTY_SQUARE,

EMPTY_SQUARE, EMPTY_SQUARE, EMPTY_SQUARE, EMPTY_SQUARE,
EMPTY_SQUARE, EMPTY_SQUARE, EMPTY_SQUARE, EMPTY_SQUARE,

WHITE_PAWN, WHITE_PAWN, WHITE_PAWN, WHITE_PAWN,
WHITE_PAWN, WHITE_PAWN, WHITE_PAWN, WHITE_PAWN,

WHITE_ROOK, WHITE_KNIGHT, WHITE_BISHOP, WHITE_QUEEN,
WHITE_KING, WHITE_BISHOP, WHITE_KNIGHT, WHITE_ROOK);

}

// Puts a piece on the board
// $square is the square of the piece 0-63
// $piece is the piece that is moving
function PutPiece($square, $piece)
{

global $gBoard;

// Put the piece on the board
$gBoard[$square] = $piece;

}

// Takes a piece off the board
// $square is the square of the piece 0-63 you are removing
function TakePiece($square)
{

global $gBoard;

// Take the piece off the bit board
$gBoard[$square] = EMPTY_SQUARE;

}
// This moves a piece
function MovePiece($fromSquare, $toSquare, $piece)
{

PutPiece($toSquare, $piece);
TakePiece($fromSquare);

}
function UpdateMoveList($fromSquare, $toSquare)
{

$data = $fromSquare + “ - “ + $toSquare;

146 Chapter 7 ■ Playing with Chess and Databases

// Open the database

$db = dba_open(“chess.db”, “c”, “db3”);

if(!$db)

{

dba_close();

$db = dba_open(“chess.db”, “w”, “db3”);

if(!$db)

{

printf(“Unable to open the database.”);

WriteTableFooter();

}

}

// Now that the database is open you need to find the next available key

$nextID = 0;

$key = dba_firstkey($db);

while($key != false)

{

if($key > $nextID)

{

$nextID = $key;

}

$key = dba_nextkey($db);

}

$nextID++; // This is the next largest available key

$dba_insert($nextID, serialize($data), $db);

// Close the database
dba_close($db);

}
?>

First you create a shell for the render() function. This is fairly straightforward and noth-
ing new to you. Next you create a new file called pieces.php. This is what you will include
along with the common.php file. In pieces.php will be all of the logic for starting a board,
moving a piece, and taking a piece.

Notice that in pieces.php you have several constants. This makes it easy to create the nec-
essary pieces for both sides. Next you create each piece type that is on the board using the
constants that you created. If you haven’t guessed yet, the white player is the constant 0
and the black player is the constant 1. You can create defines for these if you like, and you
probably should.

Working with the Pieces 147

The StartBoard() function is fairly straightforward. It initializes the entire board and places
the pieces in the proper places. Since you will be the white player, you are technically at
the bottom of the board and black is at the top of the board. Since black is at the top of
the board it takes up the first locations of the array and white takes up the last locations
of the array.

The PutPiece() function takes a square and a piece as its parameters. The square is the
square you would like to put the piece on, and the piece is the piece you are placing on
that square. The TakePiece() function simply takes a square that you are taking a piece off
of. The MovePiece() function takes a square and a piece then calls the PutPiece() function
and the TakePiece() function.

Now you have the basic logic for putting a piece on the board, taking a piece off the board,
and starting a new board. Plus you have all the variables you need for the bit boards and
all the variables you need to represent the pieces. Next you need a way to render the board
to the browser so you can see it.

Think about how a chess board is laid out: it is an 8 × 8 board with alternating colors for
squares. The square in the lower right of the board and the square in the upper left of the
board must be the lighter-colored square. Your brain should now be saying things like, “A
loop would be good. But wait, an 8 × 8 board…two loops would be better.” That’s right,
you need two for loops, one for the eight rows, and one for the eight columns in the board.
Let’s use two shades of brown for the board. For the lighter color use #E4B578 and for the
darker-colored squares let’s use #B88645.

function DrawBoard()
{

global $gBoard;

printf(“<table border=\”0\” cellpadding=\”0\” cellspacing=\”1\”>
<tr><td align=\”center\” valign=\”middle\” width=\”300\”>”);

// Start our table to contain the board

printf(“<table border=\”0\” cellpadding=\”0\”

cellspacing=\”1\” width=\”240\”>”);

$currColor = “#E4B578”;

for($row = 0; $row < 8; $row++)

{

// Print a new table row
printf(“<tr>”);

for($col = 0; $col < 8; $col++)

148 Chapter 7 ■ Playing with Chess and Databases

{
// Get the piece to render
$piece = $gBoard[$row * 8 + $col];

// Start a new table cell for this piece
printf(“<td bgcolor=$currColor>”);

// Place the piece on the board
switch($piece)
{

case WHITE_PAWN: {
printf(“<img src=\”images/wp.gif\”

border=\”0\”>”); break; }
case WHITE_KNIGHT: {
printf(“<img src=\”images/wn.gif\”

border=\”0\”>”); break; }
case WHITE_BISHOP: {
printf(“<img src=\”images/wb.gif\”

border=\”0\”>”); break; }
case WHITE_ROOK: {
printf(“<img src=\”images/wr.gif\”

border=\”0\”>”); break; }
case WHITE_QUEEN: {
printf(“<img src=\”images/wq.gif\”

border=\”0\”>”); break; }
case WHITE_KING: {
printf(“<img src=\”images/wk.gif\”

border=\”0\”>”); break; }
case BLACK_PAWN: {
printf(“<img src=\”images/bp.gif\”

border=\”0\”>”); break; }
case BLACK_KNIGHT: {
printf(“<img src=\”images/bn.gif\”

border=\”0\”>”); break; }
case BLACK_BISHOP: {
printf(“<img src=\”images/bb.gif\”

border=\”0\”>”); break; }
case BLACK_ROOK: {

printf(“<img src=\”images/br.gif\”
border=\”0\”>”); break; }

Working with the Pieces 149

case BLACK_QUEEN: {

printf(“<img src=\”images/bq.gif\”

border=\”0\”>”); break; }

case BLACK_KING: {

printf(“<img src=\”images/bk.gif\”

border=\”0\”>”); break; }

case EMPTY_SQUARE: {

printf(“”); break; }
default: {
printf(“”); }

}

// End this table cell

printf(“</td>\n”);

// Switch the color

if($currColor == “#E4B578”)

{

$currColor = “#B88645”;

}

else

{

$currColor = “#E4B578”;

}

}

// End this table row

printf(“</tr>\n”);

//Switch the color

if($currColor == “#E4B578”)

{

$currColor = “#B88645”;

}

else

{

$currColor = “#E4B578”;
}

}

150 Chapter 7 ■ Playing with Chess and Databases

// End the table

printf(“</table>”);

printf(“</td><td align=\”center\” valign=\”middle\”
width=\”100\”>DATABASE STUFF HERE</td></tr></table>”);

WriteTableFooter();
}

The DrawBoard() function uses one global: the board itself. It contains two for loops; one is
to loop through the rows of the board and the other is to loop through the columns of the
board. Since you are using a single-dimension array to store the state of the board, you
need to calculate the row and column. To do this you multiply the row you are currently
on by the number of columns you have, which in this case is 8. Then you add the column
that you are currently on, and this will give you your proper index into your array. Once
you have this index you can retrieve the piece that is in that position and draw it on the
board. After one column is done, it changes the colors of the squares and repeats for all
rows and columns. The results of this should look like Figure 7.2.

Figure 7.2 Results of your render function.

Getting the User Input and Modifying the Database 151

Now that you have the basic shell of the game, let’s take the user’s input, store it in a data-
base, update the board and the “DATABASE STUFF HERE” section accordingly.

Getting the User Input and Modifying the Database
To retrieve the user’s desired moves you need to keep track of a few things. One is which
player’s turn it is. Remember the global variable $gCurrentPlayer that you created when you
first started this game? That’s what you will use to keep track of the player. You’ll want to
take in your user input in one central location for your programming, and then you will
want to update the board so the user can visually see what is happening.

function ProcessInput()
{

global $gBoard, $gCurrentPlayer;

if($_POST[‘fromSquare’] == “”)

return;

// Get the to and from square

$fromSquare = GetSquare($_POST[“fromSquare”]);

$toSquare = GetSquare($_POST[“toSquare”]);

// Get the piece to be moved
$piece = $gBoard[$fromSquare];

if(($piece % 2) != 0 && $gCurrentPlayer == “white”)

{

printf(“It is not your turn”);
return;

}

// Move the piece

MovePiece($fromSquare, $toSquare, $piece);

// Update the database

UpdateMoveList($_POST[“fromSquare”], $_POST[“toSquare”]);

// Change the current player

if($gCurrentPlayer == “white”)

{

$gCurrentPlayer = “black”;

152 Chapter 7 ■ Playing with Chess and Databases

}

else

{

$gCurrentPlayer = “white”;

}

// Store the updated board in the session
$_SESSION[‘gBoard’] = $gBoard;
$_SESSION[‘gCurrentPlayer’] = $gCurrentPlayer;

}

function GetSquare($strSquare)
{

$col = substr($strSquare, 0, 1);
$row = substr($strSquare, 1, 1);

switch($col)
{

case “a”: { $col = 0; break;}

case “b”: { $col = 1; break;}

case “c”: { $col = 2; break;}

case “d”: { $col = 3; break;}

case “e”: { $col = 4; break;}

case “f”: { $col = 5; break;}

case “g”: { $col = 6; break;}

case “h”: { $col = 7; break;}

}

switch($row)
{

case “8”: { $row = 0; break;}

case “7”: { $row = 1; break;}

case “6”: { $row = 2; break;}

case “5”: { $row = 3; break;}

case “4”: { $row = 4; break;}

case “3”: { $row = 5; break;}

case “2”: { $row = 6; break;}

case “1”: { $row = 7; break;}

}

return($row * 8 + $col);
}

Getting the User Input and Modifying the Database 153

The ProcessInput() function first retrieves the square that you are moving from and the
square that you are moving to by using the GetSquare() function. The GetSquare() function
gets the row and the column that the user entered by using the substr() function. The col-
umn is the first character in the string, and the row is the second character in the string.
Since white is on the bottom and white always moves first, you need to flip the board to
get the proper numbers. That is what the two switch statements are used for. The first
switch statement relates a letter to a column number. The second switch statement
reverses the order of the rows. The return statement is the exact calculation you used in
the DrawBoard() function.

After the source square and the destination square are retrieved you need to check to see
if the current user is even allowed to move the piece that he is trying to move. If it is not
his turn you let him know. You can determine if it is white’s turn or not because the piece
number that you defined in the pieces.php file are all even for white and odd for black. So
if you perform a modulus by two on the current piece and the result is zero, then it is
white’s turn; otherwise it is black’s turn. The last step to making a move is to move the
piece on the board, update the database, switch the current player’s turn, and update the
session data.

The UpdateMoveList() function takes two arguments: the from square and the to square.
This is the function that inserts the information into the database. Take a look at it:

function UpdateMoveList($fromSquare, $toSquare)
{

$data = $fromSquare + “ - “ + $toSquare;

// Open the database
$db = dba_open(“chess.db”, “c”, “db3”);
if(!$db)
{

dba_close();
$db = dba_open(“chess.db”, “w”, “db3”);
if(!$db)
{

printf(“Unable to open the database.”);

WriteTableFooter();

}

}

// Now that the database is open you need to find the next available key

$nextID = 0;

$key = dba_firstkey($db);

while($key != false)

154 Chapter 7 ■ Playing with Chess and Databases

{

if($key > $nextID)

{

$nextID = $key;

}

$key = dba_nextkey($db);

}

$nextID++; // This is the next largest available key

$dba_insert($nextID, serialize($data), $db);

// Close the database
dba_close($db);

}

The first thing UpdateMoveList() does is create a string with the data that you want to insert
into the file. Then it creates a new database called chess.db. If chess.db already exists, then
it opens it with read/write permissions. To insert any data into the database you need to
find the first available key. To do this you must loop through the database and find the last
key and add one. After this is done you can insert your record and close the database.

Now that you’re storing the moves in a database you obviously will want to show the user
the move history. To do this you will want to use the <IFRAME></IFRAME> tag and point the
source page to a new PHP page called move.php. Here is the whole move.php file:

<?php

// Display the moves in the page

$db = dba_open(“chess.db”, “r”, “db3”);

// Get the first record

$key = dba_firstkey($db);

$move = 1;

// Loop through the whole database

while($key != false)

{

$value = dba_fetch($key, $db);

$entry = unserialize($value);

printf($move . “. “ . $entry . “
”);

$key = dba_nextkey($db);

$move++;

Getting the User Input and Modifying the Database 155

}
dba_close($db);
?>

Now that you have the page to display the moves you will need to edit your DrawBoard()
function to write out the <IFRAME></IFRAME> tag. All you will need to do is specify the source
page for the inlaid frame, the width, and the height, like this:

printf(“<IFRAME src=\”move.php\” width=\”200\”
height=\”300\”>Unable to display move history.</IFRAME>”);

This line should go where you originally had the “DATABASE STUFF HERE” line. The
results of all of your hard work are shown in Figure 7.3.

N o t e

At this point you should go into your php.ini file and turn display_errors to off. The reason for this
is because you only want to display errors when debugging; otherwise you will have warning
notices all over the place that really don’t affect the game play.

Figure 7.3 Results of using the database.

156 Chapter 7 ■ Playing with Chess and Databases

Conclusion
This game is far from over. There are so many more elements you could add, such as com-
puter A.I., move validation, and network support—all of which would be great features
for your game.

However, you have covered a great deal of information in this chapter. You have learned
what a non-relational database is, how to create a non-relational database, how to modify
a database, some chess programming basics, and, on top of all that, you have created a
basic chess game with database support to show the move history. Although there are sev-
eral elements you could add to improve the chess game, you have completed a fantastic
job of creating a really cool basic chess game.

Next up: working with dynamic graphics.

chapter 8

GD Graphics
Overview

■ What Is GD?

■ Installing GD

■ Creating an Image

■ Drawing Shapes on the Canvas

■ Manipulating Color Information

■ Adding Text to Images

■ Resizing Images

Boutell’s GD library is a great tool that provides you with ways to manipulate
graphics on the fly. In this chapter you will be learning just that. You will start off
by learning how to create images and draw simple shapes on the canvas. Then you

will learn how to manipulate the color information of an image, add text to an image, and,
finally, how to resize an image. This knowledge will allow you to add cool graphics on the
fly to your on-line game.

What Is GD?
GD is a C graphics library that allows you to create and manipulate .jpegs, .pngs, and
.wbmps. What’s that you say? No support for .gifs? That is correct. There used to be a GD
library out there at one time that supported the .gif file format, but since Unisys (the com-
pany that owns the patent on LWZ compression that .gifs use) changed their licensing
agreements, GD has stopped supporting the .gif file format. This could change in the next

157

158 Chapter 8 ■ GD Graphics Overview

year, because Boutell (the company that makes the GD library) is planning to support .gifs
as soon as the patent expires. Meanwhile, have no fear because .pngs support all of the fea-
tures of a .gif (as was discussed in Chapter 3).

Installing GD
Just in case you missed installing the GD library when you were setting up PHP, I’ll
quickly go over it again. I will also show you a great little chunk of code that you can use
to load the library dynamically.

To install GD on a Linux or UNIX installation you will need to recompile PHP with
the --with-gd option. You can also compile the GD library as a shared object so you can
load the GD library dynamically whenever you need it. To do this you would use the
--with-gd=shared option. Then, to load in the library dynamically at run time, you would
use the following line of code:

dl(‘gd.so’);

To install GD on a Windows platform you need to copy the php_gd2.dll that came with
the installation package into the extensions directory specified in the php.ini file. Then
you will need to edit the php.ini file and uncomment the following line:

extension=php_gd2.dll

This will enable access to the GD library. If you would like to load the extension dynami-
cally with script you may do so with the following line of code:

dl(‘php_gd2.dll’);

C a u t i o n

In order to dynamically load an extension, the shared object file (UNIX) or the dll file (Windows)
must be in the extensions directory specified in the php.ini file. If it is not, then the loading of the
extension will fail and none of the functions will be available to your game.

Let’s say you don’t know if the server you are hosting your files on is a UNIX or a Win-
dows server. You can create a dynamically loading script that will work on either platform
very easily. Just take a look at the following code:

<?php
if(!extension_loaded(‘gd’))
{

if(strtoupper(substr(PHP_OS, 3)) == “WIN”)
{

dl(‘php_gd2.dll’);

Installing GD 159

}

else

{

dl(‘gd.so’);
}

}
?>

This handy little chunk of code will work for any extension—this example just happens
to be for the GD library. The first step is to see if the extension is already loaded. If the
extension is loaded then why would you want to do anything else? If, however, the exten-
sion is not loaded then you will need to determine what platform you are on and load the
proper file. To determine what OS the PHP script is living on you will need to use the
PHP_OS constant. This returns the information about the current OS. If you are on a
Windows platform the first three characters of the string will be “WIN”. If you do not find
the string “WIN” in the PHP_OS constant it is safe to assume that you are on a UNIX plat-
form. Once you know what platform you are on you can dynamically load the extension
that you want by using the dl() function.

Now that you have the extension properly loaded it is time to test to see if it is actually
there. The easiest way to do this is to use the phpinfo() function. Remember when you used
this in Chapter 2? You will need to run that same test script again and look for a section
in the page that looks like Figure 8.1.

Figure 8.1 Results of the phpinfo() function.

160 Chapter 8 ■ GD Graphics Overview

Creating and Using a New Image
To create new images, GD offers you two functions. Both of these functions take two
arguments, width and height, and they both return a resource to the image.

■ ImageCreate(width, height)

■ ImageCreateTrueColor(width, height)

GD also offers functions to create images from existing files, but you will learn about these
later in this chapter. First take a look at the ImageCreate() function.

N o t e

A resource to an image is just the chunk of memory in which the image is being stored. In PHP you
work in memory to manipulate images instead of a GUI like Paint Shop Pro.

ImageCreate() creates a new blank image with width number of pixels across, and height
number of pixels tall. The color palette that ImageCreate() uses when creating an image is
an indexed-color palette, meaning that the number of colors in the palette will be 256.

Remember in Chapter 3 when image types and compressions were discussed? The
indexed-color palette uses a color lookup table to determine the specific color. These types
of images are really good for images that use flat colors or text and they are especially good
with simple shapes. You can save these images as .png files, and if GD ever supports the
.gif file format again you will be able to save them as .gif files.

C a u t i o n

If you save an 8-bit image (also referred to as an indexed-color palette image) as a .jpeg you will
end up with quite large file sizes and blotchy images.

Take a look at an example for creating a blank image:

<?php
if(!extension_loaded(‘gd’))
{

if(strtoupper(substr(PHP_OS, 3)) == “WIN”)
{

dl(‘php_gd2.dll’);

}

else

{

dl(‘gd.so’);

How to Use Colors 161

}
}
$imageResource = ImageCreate(100, 100);
?>

You now have an image in memory that is 100 pixels wide and 100 pixels tall. You can now
operate on this image using various functions provided by GD. Before you get into these
functions, though, take a very quick look at the ImageCreateTrueColor() function.

The ImageCreateTrueColor() function also takes a width and height and it also returns a
resource to an image in memory. However, it has one key difference: it creates an image
with a true-color palette instead of an indexed-color palette. This makes this function
ideal for creating complex graphics with lots of different elements in them. You would use
this function to create .jpeg images. You can also save the image as a .png, but it will be
saved as a true-color .png file instead of an indexed-color .png file.

Now that you know how to create an image resource, you will want to know how to edit
this resource.

How to Use Colors
Before you can actually start drawing geometric shapes all over the place, you need the
ability to select and use color. There are eight basic functions for color, as follows:

■ ImageColorAllocate(resource image, int red, int green, int blue)

■ ImageFill(resource image, int x, int y, int color)

■ ImageColorTransparent(resource image, int color)

■ ImageTrueColorToPalette(resource image, bool dither, int colors)

■ ImageColorsTotal(resource image)

■ ImageColorAt(resource image, int x, int y)

■ ImageColorsForIndex(resource image, int index)

■ ImageColorSet(resource image, int index, int red, int green, int blue)

Each of these functions takes an image resource as its first argument. Now take a more in-
depth look at each of these functions to see how you will be able to use them to manipu-
late the colors on your canvas.

Allocating Colors to an Image
ImageColorAllocate() takes four arguments: an image resource, a value for the amount of
red that should be in the color, a value for the amount of green that should be in the color,

162 Chapter 8 ■ GD Graphics Overview

and a value for the amount of blue that should be in the color. If you have never used RGB
(red, green, blue) values before, each element of the color has a range of 0 to 255; 0 being
the lowest level and 255 being the highest level. Let’s say you wanted to allocate a color
that was completely black. You would write a line of code that looks like the following:

$black = ImageColorAllocate($someImageResource, 0, 0, 0);

What this essentially means is that you will be able to use the variable $black as a color in
the specified image resource. If you were working with two images simultaneously, then
you would not be able to use the variable $black in both images. You can use only the col-
ors that you allocate to a specific image. If this seems a little confusing, take a look at the
following code example and hopefully it will make things a little clearer:

<?php

// Create two images

$image1 = ImageCreate(100, 100);

$image2 = ImageCreate(100, 200);

// Allocate the colors to be used

$black = ImageColorAllocate($image1, 0, 0, 0);

// This is legal to do

ImageRectangle($image1, 6, 6, 66, 42, $black);

// This is illegal to do because black is not allocated to the image

ImageRectangle($image2, 6, 6, 66, 42, $black);

?>

Filling the Image
The ImageFill() function also takes four arguments: an image resource, a starting x point,
a starting y point, and the color to fill. ImageFill() does a flood fill of the entire image
starting at the specified coordinates. Since this function fills the entire image there is no
need to specify any other coordinate besides (0, 0). Take a look at the following example:

<?php

$image = ImageCreate(100, 100);

$red = ImageColorAllocate($image, 255, 0, 0);

ImageFill($image, 0, 0, $red);

// Show our Image

header(“Content-type: image/png”);

ImagePng($image);

ImageDestroy($image);

?>

Take a look at Figure 8.2 to see the results of using the ImageFill() function.

How to Use Colors 163

Figure 8.2 Results of using the ImageFill() function.

You could have specified any (x, y) coordinate and you would have received the same exact
results. Don’t worry too much about the display code right now; it will be covered later in
this chapter.

Setting Your Transparent Color
If you are using an image format that supports transparencies, such as .png, you can set
the color you want to show up as transparent by using the ImageColorTransparent() func-
tion (Figure 8.3). ImageColorTransparent() takes two arguments: the image resource, and
the color that you want to make transparent. To allocate a color to be transparent you still
use the ImageColorAllocate() function. To understand this better, take a look at the code
below. In the following example a red circle is drawn over a dark background and then the
color red is made transparent and the same image is drawn again.

<?php

$image = ImageCreate(128, 128);

$black = ImageColorAllocate($image, 0, 0, 0);

$red = ImageColorAllocate($image, 255, 0, 0);

// Make the background black

ImageFill($image, 0, 0, $black);

// Draw the circle

ImageFilledArc($image, 64, 64, 110, 110, 0, 360, $red, IMG_ARC_PIE);

// Show our Image Filled Image

ImagePng($image, “redcircle.png”);

// Make the red transparent

ImageColorTransparent($image, $red);

164 Chapter 8 ■ GD Graphics Overview

// Show our Image Transparent Image

ImagePng($image, “transparentcircle.png”);

ImageDestroy($image);

?>

<HTML>

<HEAD>

<TITLE>Image Test</TITLE>
</HEAD>
<BODY>

</BODY>
</HTML>

C a u t i o n

You will need to change the permissions on the folder containing redcircle.png in order to use the
example. Simply add read/write permissions to the IUS_(MACHINENAME) user under the security
tab for the folder.

Figure 8.3 Using transparent colors.

How to Use Colors 165

How cool is that!? You are quickly becoming a graphic expert in PHP. Again, don’t worry
about the display code yet; I promise you will get to it later in this chapter.

Converting a True-Color Image to a Palette Image
Converting an image is not as complicated as it sounds. As a matter of fact, this is very easy
using the ImageTrueColorToPalette() function. ImageTrueColorToPalette() takes three argu-
ments, the first of which is the image resource. The second is a Boolean value—if it is set to
true, then dithering will be used; otherwise dithering will not be used. The third argument
is the number of colors that should appear in the color palette of the new image.

You could use this function to convert a .jpeg image into an indexed-color image, but the
decline in quality of the image would be very noticeable. The most logical reason to use
this function would be if you have a .png image that uses only, say, 16 colors, but it was
saved as a true-color image for some odd reason. Take a look at the following example:

<?php
// Get the image that needs to be converted
$image = ImageCreateFromPng(‘truecolorimage.png’);
// Now convert the image, since it is only using 16 colors you only need to specify 16
colors
ImageTrueColorToPalette($image, true, 16);
// save the image
ImagePng($image, ‘convertedimage.png’);
?>

See, you converted an existing image from a true-color image to an indexed-color image
and saved it as a new image all in three lines of code. I told you it wasn’t as complicated
as it sounded. Do some experimenting with this function on several different images to
see the effects. Convert a .jpeg photo using dithering, and then do the same thing without
using dithering to see the dramatic differences.

Counting Colors in an Image
To get the total number of colors in an image, you can use ImageColorsTotal().
ImageColorsTotal() takes one argument: the image resource for which you want to count
the number of colors.

<?php
// get an Image
$image = ImageCreateFromPng(‘somegraphic.png’);
// now count the colors in this Image

166 Chapter 8 ■ GD Graphics Overview

$totalColors = ImageColorsTotal($image);

echo(“There are “ . $totalColors . “ colors in this image”);

?>

C a u t i o n

The ImageColorsTotal() function works only with indexed-color images.

Retrieving a Color at a Point
The ImageColorAt() function takes three arguments: the image resource, an x point, and a
y point. ImageColorAt() will return the index of the color at the specified (x, y) pixel. Once
you have this index you can use the ImageColorsForIndex() function to retrieve the red,
green, and blue components of the specific color.

<?php
$image = ImageCreateFromJpeg(‘someimage.jpg’);
$colorIndex = ImageColorAt($image, 100, 20);

$colorArray = ImageColorsForIndex($image, $colorIndex);
$red = $colorArray[‘red’];
$green = $colorArray[‘green’];
$blue = $colorArray[‘blue’];

echo(“Red: “ . $red . “
Green: “ . $green . “
Blue:” . $blue);
?>

C a u t i o n

The ImageColorAt() function works only with true-color images.

The ImageColorsForIndex() function takes two arguments: an image resource and a color
index. It then returns an array with the individual red, green, and blue components in
each index. Once you have these components you could use the ImageColorAllocate() func-
tion to allocate a color for an image, or you could use the ImageColorSet() function to
change a color in an image.

The ImageColorSet() function takes five arguments. The first is the image resource that you
want to operate on, the second is the index of the color you want to change, the third
argument is the red component, the fourth is the green component, and the fifth and final
argument is the blue component.

Drawing Basic Shapes on Your Empty Canvas 167

Drawing Basic Shapes on Your Empty Canvas
You now know how to create an image canvas that you can draw on, and you also know
how to allocate, manipulate, and count colors in an image. Now you’ll learn how to draw
geometric shapes on your empty canvas.

T i p

If you have ever worked with DirectX you can think of the image resource as a buffer that you draw
on. When you display the image you can think of that as blitting the buffer to the screen. The only
difference is that you don’t do this per frame.

To draw anything on your images you need a coordinate system. GD uses a Cartesian
coordinate system where the point (0, 0) is in the upper left-hand corner of the image.
Moving to the right along the x axis will move you in the positive x direction. Moving
down along the y axis will move you in the positive y direction. You will never use a neg-
ative x or y coordinate when working with images.

Each of the eight geometric functions available in GD takes one or more sets of coordi-
nates. You will be reviewing each of the eight functions in detail, so dust off all of those
old geometry lessons and get ready. Here are the eight geometric functions, in order from
easiest to hardest:

■	 ImageSetPixel(resource image, int x, int y, int color)

■	 ImageLine(resource image, int x1, int y1, int x2, int y2, int color)

■	 ImageRectangle(resource image, int x1, int y1, int x2, int y2, int color)

■	 ImageFilledRectangle(resource image, int x1, int y1, int x2, int y2, int color)

■	 ImagePolygon(resource image, array points, int numberOfPoints, int color)

■	 ImageFilledPolygon(resource image, array points, int numberOfPoints, int color)

■	 ImageArc(resource image, int centerXPoint, int centerYPoint, int width, int

height, int startDegree, int endDegree, int color)

■	 ImageFilledArc(resource image, int centerXPoint, int centerYPoint, int width, int
height, int startDegree, int endDegree, int color, int style)

Pixels and Lines
ImageSetPixel() takes four arguments: the first is the image resource, the second is the x
point, the third is the y point, and the fourth argument is the color. The ImageSetPixel()
function draws a single pixel at point (x, y) in the specified color. Take a look at the fol-
lowing example:

<?php
$image = ImageCreate(320, 200);

168 Chapter 8 ■ GD Graphics Overview

$color = ImageColorAllocate($image, 254, 254, 254);
ImageFill($image, $color);

for($iLoop = 0; $iLoop < 1000; $iLoop++)
{

$color = ImageColorAllocate($image, rand() % 256, rand() % 256, rand() % 256);
ImageSetPixel($image, rand() % 320, rand() % 200, $color);
}

header(“Content-type: image/png”);

ImagePng($image);

ImageDestroy($image);

?>

This example generates a 320 × 200 image, setting 1000 random pixels in a random color
throughout the canvas. You use the random function to generate a random number and
then perform a modulus on that number to keep it between the specified limits of the can-
vas size. Take a look at Figure 8.4 to see the results of the code.

Now that you can draw pixels to the screen, let’s deal with a function that is a little more
practical. The ImageLine() function draws a line to the canvas. It takes six arguments. The
first is the resource to the image to which you are drawing the line. The second and third
arguments are the starting coordinates of the line. The fourth and fifth arguments are the
ending coordinates of the line. The final argument is the color that you want the line to
be drawn in.

<?php

$image = ImageCreate(320, 200);

$white = ImageColorAllocate($image, 255, 255, 255);

$black = ImageColorAllocate($image, 0, 0, 0);

ImageFill($image, $white);

ImageLine($image, 5, 5, 40, 100, $black);

header(“Content-type: image/png”);

ImagePng($image);

ImageDestroy($image);

?>

In this example, you first create an image that is 320 × 200 pixels wide. Then you allocate
two colors, white and black. You fill the canvas with the white color so your canvas is now
all white. Then you draw a line from point (5, 5) to point (40, 100) in black and output
the image to the browser.

Drawing Basic Shapes on Your Empty Canvas 169

Figure 8.4 Generating 1000 random pixels.

Figure 8.5 Drawing a line.

From Lines to Rectangles
ImageRectangle() takes the same four parameters as the ImageLine() function, except instead
of the starting point of a line and an ending point for a line, it is the upper left-hand cor-
ner of the rectangle and the lower right-hand corner of the rectangle.

<?php
$image = ImageCreate(320, 200);

170 Chapter 8 ■ GD Graphics Overview

$white = ImageColorAllocate($image, 255, 255, 255);
$black = ImageColorAllocate($image, 0, 0, 0);
ImageFill($image, $white);

ImageRectangle($image, 5, 5, 100, 100, $black);

header(“Content-type: image/png”);
ImagePng($image);
ImageDestroy($image);

?>

The results of this example are shown in Figure 8.5.

But wouldn’t it be better to give the rectangle a starting (x, y) coordinate and a width and
a height that you would like the rectangle to be? You can create a function that does exactly
that.

<?php

function MyRectangle($image, $x1, $y1, $width, $height, $color)

{

// First you need to calculate the values for x2 and y2
$x2 = $x1 + $width;
$y2 = $y1 + $height;

// Now draw the rectangle
ImageRectangle($image, $x1, $y1, $x2, $y2, $color);

}

$image = ImageCreate(320, 200);

$white = ImageColorAllocate($image, 255, 255, 255);

$black = ImageColorAllocate($image, 0, 0, 0);

ImageFill($image, $white);

MyRectangle($image, 5, 5, 95, 95, $black);

header(“Content-type: image/png”);

ImagePng($image);

ImageDestroy($image);

?>

The results of this example look like Figure 8.6, but the function is much more intuitive.
I recommend that anytime you see a way to make a function simpler by creating your
own, then do it. Anytime that you can make code that makes more sense when you read
it, you should do it.

Drawing Basic Shapes on Your Empty Canvas 171

Figure 8.6 The ImageRectangle()
function.

ImageFilledRectangle() functions exactly like ImageRectangle(), except it creates a filled rec-
tangle. ImageFilledRectangle() takes the same six parameters as ImageRectangle(). Take a
look at the following code example to see the MyFilledRectangle() function:

<?php

function MyFilledRectangle($image, $x1, $y1, $width, $height, $color)

{

// First you need to calculate the values for x2 and y2

$x2 = $x1 + $width;

$y2 = $y1 + $height;

// Now draw the rectangle
ImageFilledRectangle($image, $x1, $y1, $x2, $y2, $color);

}

$image = ImageCreate(320, 200);

$white = ImageColorAllocate($image, 255, 255, 255);

$black = ImageColorAllocate($image, 0, 0, 0);

ImageFill($image, 0, 0, $white);

MyFilledRectangle($image, 5, 5, 100, 100, $black);

header(“Content-type: image/png”);

ImagePng($image);

ImageDestroy($image);

?>

The results of the code above are shown in Figure 8.7.

172 Chapter 8 ■ GD Graphics Overview

Figure 8.7 The MyFilledRectangle() function.

From Rectangles to Polygons
As mentioned earlier, the concepts of each geometric shape will get progressively more
difficult. However, drawing a polygon isn’t that complicated. The major difference
between drawing a polygon and drawing a rectangle is the number of coordinates the
function will take. So far you have dealt only with functions that take one coordinate
(x, y). The ImagePolygon() function takes multiple coordinates. It also takes the number of
points that are in your polygon. When the ImagePolygon() function draws your polygon it
connects each point with a line.

ImagePolygon() takes four arguments. The first is, of course, the resource to the image. The
next argument is an array that contains all of your point coordinates for the polygon. The
third argument is an integer telling ImagePolygon() how many vertices are in your polygon.
The fourth and final argument is the color in which you want your polygon to be drawn.

Let’s say you wanted to draw a triangle on your canvas. You would need three sets of coor-
dinates. You can store these coordinates in an array, for example:

$points = array(50, 10,
20, 40,
80, 40);

This gives you each corner of the triangle. Now you need to calculate how many points
there are in the given polygon. With a triangle it is simple; there are obviously three points.
But what would you do for a more complex shape? Well, since there are two elements in
every point you can divide the size of the array by 2 to get the number of points in the
polygon.

$vertices = sizeof($points) / 2;

Drawing Basic Shapes on Your Empty Canvas 173

Remember in the last section that I said anytime you see a way to make the code a little
simpler, do it. Well, what if you created a function that took three arguments instead of
four to create a polygon? That would be great, wouldn’t it? You could save doing the num-
ber of vertices calculation every time you wanted to draw a polygon.

<?php

function MyPolygon($image, $points, $color)

{

// Calculate the number of vertices in the polygon

$vertices = sizeof($points) / 2;

// Draw the polygon to the canvas

ImagePolygon($image, $points, $vertices, $color);

}
?>

I know it doesn’t seem like much now, but what if you were constantly drawing polygons
and you had to redo that stupid division calculation every single time? Take a look at the
following example to see how to draw a polygon:

<?php

function MyPolygon($image, $points, $color)

{

// Calculate the number of vertices in the polygon

$vertices = sizeof($points) / 2;

// Draw the polygon to the canvas

ImagePolygon($image, $points, $vertices, $color);

}
$points = array(50, 10,

20, 40,
80, 40);

$image = ImageCreate(320, 200);

$white = ImageColorAllocate($image, 255, 255, 255);

$black = ImageColorAllocate($image, 0, 0, 0);

ImageFill($image, 0, 0, $white);

MyPolygon($image, $points, $black);

header(“Content-type: image/png”);

ImagePng($image);

ImageDestroy($image);

?>

The results of this example can be seen in Figure 8.8.

174 Chapter 8 ■ GD Graphics Overview

Figure 8.8 Drawing a polygon with the
ImagePolygon() function.

The ImageFilledPolygon() function takes the same parameters as the ImagePolygon() func-
tion, but instead of drawing an outline of the polygon it draws a filled-in version of the
polygon. Here is a modified function for the ImageFilledPolygon() function:

<?php

function MyFilledPolygon($image, $points, $color)

{

// Calculate the number of vertices in the polygon
$vertices = sizeof($points) / 2;
// Draw the polygon to the canvas
ImageFilledPolygon($image, $points, $vertices, $color);

}
?>

From Polygons to Arcs and Ellipses
Wow, you are quickly becoming a master at creating on-the-fly images with GD. After you
learn how to create arcs and ellipses, you will move on to putting dynamic text in your
graphics, and finally you will take a more in-depth look at how to display and save your
on-the-fly images.

GD provides you with a function called ImageArc() to create, well, arcs. This function takes
a whopping eight arguments. The first is the resource to the image. The next two argu-
ments are the center x point for the arc and the center y point for the arc. The fourth and
fifth arguments are the desired width of the arc, and then the desired height of the arc.
The sixth argument is the starting degree for the arc. The seventh argument is the ending
degree for the arc. The eighth and final argument is the color that you would like the arc
to appear in.

Drawing Basic Shapes on Your Empty Canvas 175

N o t e

The ImageArc() function draws in a clockwise direction.

The ImageArc() function puts 0 degrees at three o’clock, 90 degrees at six o’clock, 180
degrees at nine o’clock, and 270 degrees at twelve o’clock. Although documentation on
www.php.net says that the ImageArc() function draws counter-clockwise, it actually draws
clockwise.

Take a look at how you would use the ImageArc() function and the results.

<?php

$image = ImageCreate(320, 200);

$white = ImageColorAllocate($image, 255, 255, 255);

$black = ImageColorAllocate($image, 0, 0, 0);

ImageFill($image, 0, 0, $white);

ImageArc($image, 50, 30, 90, 90, 0, 220, $black);

header(“Content-type: image/png”);

ImagePng($image);

ImageDestroy($image);

?>

The code example above draws an arc that is 90 pixels wide and 90 pixels high, with its
center point at (50, 30). It starts at the 0 degree mark and ends at the 220 degree mark.
Take a look at Figure 8.9 to see the results of the above code.

Figure 8.9 The ImageArc() function.

176 Chapter 8 ■ GD Graphics Overview

The ImageFilledArc() function behaves in the same way as the ImageArc() function. It
also draws its arc starting from three o’clock and going in a clockwise direction. But the
ImageFilledArc() function takes an additional argument. The ninth argument, after color,
is the style in which the arc should be drawn. You can also use a bitwise OR to combine
styles. Take a look at what the styles are and how they affect the arc.

■	 IMG_ARC_PIE. Draws a pie chart-styled arc with solid lines connecting the center
point to the edges of the arc.

■	 IMG_ARC_CHORD. Draws a triangle that connects the beginning and end points
of the arc.

■	 IMG_ARC_NOFILL. If this option is used, it behaves like the ImageArc() function.

■	 IMG_ARC_EDGED. Connects the end points of the arc to its center.

Let’s use each of these individually in a code example and take a look at the results so you
know how each style affects the outcome of your arc.

<?php

$image1 = ImageCreate(320, 200);

$image2 = ImageCreate(320, 200);

$image3 = ImageCreate(320, 200);

$image4 = ImageCreate(320, 200);

$white1 = ImageColorAllocate($image1, 255, 255, 255);

$white2 = ImageColorAllocate($image2, 255, 255, 255);

$white3 = ImageColorAllocate($image3, 255, 255, 255);

$white4 = ImageColorAllocate($image4, 255, 255, 255);

$black1 = ImageColorAllocate($image1, 0, 0, 0);

$black2 = ImageColorAllocate($image2, 0, 0, 0);

$black3 = ImageColorAllocate($image3, 0, 0, 0);

$black4 = ImageColorAllocate($image4, 0, 0, 0);

ImageFill($image1, $white1);

ImageFilledArc($image1, 50, 30, 90, 90, 0, 220, $black1, IMG_ARC_PIE);

ImagePng($image1, “pie.png”);

ImageDestroy($image1);

ImageFill($image2, $white2);

ImageFilledArc($image2, 50, 30, 90, 90, 0, 220, $black1, IMG_ARC_CHORD);

ImagePng($image2, “chord.png”);

ImageDestroy($image2);

Drawing Basic Shapes on Your Empty Canvas 177

ImageFill($image3, $white3);

ImageFilledArc($image3, 50, 30, 90, 90, 0, 220, $black3, IMG_ARC_NOFILL);

ImagePng($image3, “nofill.png”);

ImageDestroy($image3);

ImageFill($image4, $white4);

ImageFilledArc($image4, 50, 30, 90, 90, 0, 220, $black4, IMG_ARC_EDGED);

ImagePng($image4, “edged.png”);

ImageDestroy($image4);

?>

<table border=”1” cellpadding=”2” cellspacing=”2”>

<tr>

<td align=”left” valign=”top”></td>

<td align=”left” valign=”top”></td>

</tr>
<tr>

<td align=”left” valign=”top”>IMG_ARC_PIE</td>

<td align=”left” valign=”top”>IMG_ARC_CHORD</td>

</tr>
<tr>

<td align=”left” valign=”top”></td>

<td align=”left” valign=”top”></td>

</tr>
<tr>

<td align=”left” valign=”top”>IMG_ARC_NOFILL</td>

<td align=”left” valign=”top”>IMG_ARC_EDGED</td>

</tr>
</table>

This produces the screen that you see in Figure 8.10.

The one obvious geometric shape missing from GD is a function to create an ellipse. Or
is it? You can use the ImageArc() and ImageFilledArc() functions to create an ellipse. All you
have to do is specify a starting degree of 0 and an ending degree of 360. This will create a
full ellipse. For example:

<?php

$image = ImageCreate(320, 200);

$white = ImageColorAllocate($image, 255, 255, 255);

$black = ImageColorAllocate($image, 0, 0, 0);

ImageFill($image, $white);

ImageArc($image, 50, 40, 70, 40, 0, 360, $black);

178 Chapter 8 ■ GD Graphics Overview

header(“Content-type: image/png”);

ImagePng($image);

ImageDestroy($image);

?>

This generates an ellipse that looks like Figure 8.11.

Figure 8.10 The ImageFilledArc() function.

Figure 8.11 Creating an ellipse.

Creating Images with Text 179

Creating Images with Text
You have seen how GD can handle drawing geometry on the canvas, but what if you have
some text that you want to dynamically put into your graphic? GD provides you with
three main functions for doing just that. They are:

■	 ImageString(resource image, int fontNumber, int x, int y, string text, int color)

■	 ImageTTFText(resource image, int size, int angle, int x, int y, int color, string
fontFile, string text)

■	 ImageTTFBBox(int size, int angle, string fontFile, string text);

The ImageString() function is fairly straightforward. It takes six parameters. The first is the
resource to the image. The second is a font number, from 1 to 5, that uses a built-in font
to write out your text. The third and fourth arguments are the location that you want the
text to start at. The fifth argument is the text that you want displayed. The final argument
is the color in which you want the text to be displayed. This is the simplest of all three font
functions and gives you the least amount of flexibility.

<?php

$image = ImageCreate(320, 200);

$white = ImageColorAllocate($image, 255, 255, 255);

$black = ImageColorAllocate($image, 0, 0, 0);

ImageFill($image, $white);

ImageString($image, 1, 10, 10, “Text In Font 1”, $black);

ImageString($image, 2, 10, 30, “Text In Font 2”, $black);

ImageString($image, 3, 10, 50, “Text In Font 3”, $black);

ImageString($image, 4, 10, 70, “Text In Font 4”, $black);

ImageString($image, 5, 10, 90, “Text In Font 5”, $black);

header(“Content-type: image/png”);

ImagePng($image);

ImageDestroy($image);

?>

The code example above goes through each font size that can be rendered by the
ImageString() function. Figure 8.12 shows the results of the code. As you can see, it isn’t a
very pretty font.

180 Chapter 8 ■ GD Graphics Overview

Figure 8.12 Adding text with the
ImageString() function.

A more useful function for rendering fonts to your canvas is ImageTTFText(). The
ImageTTFText() function takes eight arguments. The first is the resource to the image; the
second argument is the size in which you want to render the text. The third argument is
the angle at which you want to render
the text. This will allow you to render
text sideways, diagonally, and even
upside down—it really is a fun argu-
ment to play with. The fourth and fifth
arguments are the (x, y) coordinate that
you want the text to start at. The sixth
argument is the color you want to ren-
der the font in. The seventh argument is
the True Type Font you want to use, and
the final argument is the text you want
to render.

The ImageTTFText() function returns an
array with eight elements that represent
the four points that make the bounding
box of the text. Take a look at Table 8.1
to see what index points to which point.

T i p

Bounding Box Coordinates

Index in
the Array Description

0 Lower left x position.

1 Lower left y position.

2 Lower right x position.

3 Lower right y position.

4 Upper right x position.

5 Upper right y position.

6 Upper left x position.

7 Upper left y position.

Table 8.1

* You start in the lower left corner and work your way
counter-clockwise around the box.

By default, ImageTTFText() renders anti-aliased text. If you would like the font to be rendered as
aliased text you need to put a “-” (minus) sign in front of the color.

Creating Images with Text 181

Now try rendering some text in a cool True Type Font. I am using Matisse ITC for this
example.

<?php

$image = ImageCreate(500, 200);

$white = ImageColorAllocate($image, 255, 255, 255);

$black = ImageColorAllocate($image, 0, 0, 0);

ImageFill($image, 0, 0, $white);

ImageTTFText($image, 36, 0, 0, 80, $black, “matisse_.ttf”, “Cool Anti-Aliased Text!!!”);

ImageTTFText($image, 36, 0, 0, 150, -$black, “matisse_.ttf”, “Cool Aliased Text!!!”);

header(“Content-type: image/png”);

ImagePng($image);

ImageDestroy($image);

?>

C a u t i o n

To run properly, the font file must be located in the same directory as your PHP file.

In this example, I rendered both anti-aliased text and aliased text to show you the differ-
ence. The results are shown in Figure 8.13. As you can see, the aliased text is very jagged
around the edges and not very pretty. I imagine there will be very few cases where you’ll
use the aliased font.

Figure 8.13 Rendering text with the ImageTTFText()
function.

182 Chapter 8 ■ GD Graphics Overview

C a u t i o n

There is a bug in the GD library in PHP 4.2. The bug will cause ImageTTFText() to throw an error.
This shouldn’t be a problem since PHP 5 has been released. If you are still using PHP 4.2, upgrade!

I know you are saying, “Cool, but what if I want to do some font effects, like embossing?”
You can do that with ImageTTFText() too. It just requires some careful placement of colors
and text. Take the same example you just did but add a few more lines of code to it.

<?php

$image = ImageCreate(500, 200);

$white = ImageColorAllocate($image, 255, 255, 255);

$black = ImageColorAllocate($image, 0, 0, 0);

$gray = ImageColorAllocate($image, 155, 155, 155);

ImageFill($image, $white);

ImageTTFText($image, 36, 0, 2, 81, $black, “matisse_.ttf”, “Cool Embossed Text!!!”);

ImageTTFText($image, 36, 0, 0, 79, $white, “matisse_.ttf”, “Cool Embossed Text!!!”);

ImageTTFText($image, 36, 0, 0, 80, $gray, “matisse_.ttf”, “Cool Embossed Text!!!”);

header(“Content-type: image/png”);

ImagePng($image);

ImageDestroy($image);

?>

The first step in creating the effect that you see in Figure 8.14 is to render the black bor-
der around the text. To do this you just add 1 to the (x, y) coordinate. Next you want to
render the text again with white to create a separation between the gray and the black. To
do this you subtract 1 from the (x, y) coordinate. The final step is to render the text in gray
at the specified (x, y) coordinate.

The final text function to learn is the ImageTTFBBox() function. This function takes four
arguments. The first is the size of the font, then the angle, followed by the True Type Font
file, and, lastly, the text you want to render. ImageTTFBBox() returns an array with the
bounding box of the text. This is an extremely useful function when you need to make
sure that the text you are going to render is within the image, unless you don’t mind cut-
ting your text off in mid-sentence.

The returned array is ordered exactly the same as the ImageTTFText() function’s array. It
starts at the lower left-hand corner of the box and works its way around in a counter-
clockwise fashion.

Creating Images with Text 183

Figure 8.14 Creating cool text effects with the
ImageTTFText() function.

Now create a function to put in our common.php file that will calculate the width and
height of the bounding box for the text. Your function will also need to take four argu-
ments, but you will want to return two integers. So your function will actually need to take
six arguments.

<?php

function MyTTFBox($size, $angle, $fontfile, $text, &$width, &$height)

{

// Get the bounding box

$arrBox = ImageTTFBBox($size, $angle, $fontfile, $text);

// Now calculate the width and the height of the box

$width = abs($arrBox[6] - $arrBox[2]);

$height = abs($arrBox[7] - $arrBox[3]);

}

$myWidth = 0;
$myHeight = 0;

MyTTFBox(36, 0, “matisse_.ttf”, “Cool Embossed Text!!!”, $myWidth, $myHeight);

echo(“The Bounding box is $myWidth pixels by $myHeight pixels.”);
?>

184 Chapter 8 ■ GD Graphics Overview

The MyTTFBox() function takes the same four arguments as the ImageTTFBBox() function plus
two more arguments—the width and the height. The width and the height are passed by
reference, meaning that anything that changes these variables in the function will also
affect the results of the variables that were passed in. Take a look at Figure 8.15 to see the
results of your new function.

Saving Your Images
Throughout the examples you have seen the use of ImagePng() and ImageJpeg(). These two
functions are used to save images to a file and render images to the browser. There is a
third function called ImageWbmp() that renders and saves WBMP files. All three of these
functions take two arguments. The first is required: the resource to the image. The second
argument is optional; you can specify a filename that you would like to save the image
data to. Just make sure that if you save a file you use the proper extension. Don’t try to save
a .png file while using the ImageJpeg() function and vice versa.

// This saves a PNG file
ImagePng($image, “myimage.png”);
// This saves a JPEG file
ImageJpeg($image, “myimage.jpg”);
// This saves a WBMP file
ImageWbmp($image, “myimage.wbmp”);

Figure 8.15 The MyTTFBox() function.

Using Existing Images 185

If you want to render the image directly to the browser you must specify a content type.
You can do this by using the built in PHP header() function. To render a .png you have to
specify a content type of image/png. To render a .jpeg you have to specify a content type
of image/jpg. To render a WBMP you have to specify a content type of image/wbmp.

// This renders a PNG to the browser

header(“Content-type: image/png”);

ImagePng($image);

// This renders a JPEG to the browser

header(“Content-type: image/jpg”);

ImageJpeg($image);

// This renders a WBMP to the browser

header(“Content-type: image/wbmp”);

ImageWbmp($image);

Using Existing Images
Throughout this chapter you have seen how to create images, use colors, draw geometri-
cal shapes to the canvas, and render text to your images. Now you will learn how to use
existing images to create new images. There are six basic functions that you will use. The
first two are the basis of using existing images to make new images.

■	 ImageCreateFromJpeg(string filename)

■	 ImageCreateFromPng(string filename)

Each of these functions returns a resource to an image. You cannot create an image from
a WBMP, only from .pngs and .jpegs.

// Get a resource to an existing image
$image = ImageCreateFromPng(“someimage.png”);

After you have opened a file and retrieved a resource you can copy, resize, resample, or
merge the image with another image with the following functions:

■	 ImageCopy(resource destinationImage, resource sourceImage, int desinationX,
int destinationY, int sourceX, int sourceY, int sourceWidth, int sourceHeight)

■	 ImageCopyResized(resource destinationImage, resource sourceImage, int desinationX,
int destinationY, int sourceX, int sourceY, int destinationWidth, int
destinationHeight, int sourceWidth, int sourceHeight)

■	 ImageCopyResampled(resource destinationImage, resource sourceImage, int
desinationX, int destinationY, int sourceX, int sourceY, int destinationWidth,
int destinationHeight, int sourceWidth, int sourceHeight)

186 Chapter 8 ■ GD Graphics Overview

■	 ImageCopyMerge(resource destinationImage, resource sourceImage, int destinationX,
int destinationY, int sourceX, int sourceY, int sourceWidth, int sourceHeight,
int percent)

I have included two images on the CD called dragon.jpg and frame.jpg. You will use
these images to create a new image using the ImageCopy() function. The images appear in
Figure 8.16.

Now you will copy dragon.jpg onto frame.jpg using the ImageCopy() function.

<?php
// Get our image resources
$dragon = ImageCreateFromJpeg(“dragon.jpg”);
$frame = ImageCreateFromJpeg(“frame.jpg”);

// Copy dragon onto frame
ImageCopy($frame, $dragon, 21, 31, 0, 0, 477, 462);

// Save the image and show it
ImageJpeg($frame, “frameDragon.jpg”);

echo(“”);
?>

Figure 8.16 Images for use in the ImageCopy() function.

Using Existing Images 187

I’ll break down each element of the ImageCopy() function in this example. The first argu-
ment is the destination image, which in this case is $frame. The second argument is the
source image, which is $dragon. The next argument is what pixel you want to put the
source image in in the destination image. Since the frame ends at the coordinate (21, 31),
that is where you want to put the source image. The next argument is what pixel you want
to grab the image at. Since the dragon image fits perfectly inside the frame, you just grab
it starting at the coordinate (0, 0). The final arguments are the width and height of the
source image. Since the dragon does fit perfectly within the frame, you can specify the
actual width and height of the image. But what if the dragon was the same size as the
frame?

If both the images were the same size, you would have to do a little math to get the same
results as Figure 8.17. You would want to first grab the source image from the same point
you were placing the image. In the example above, it would be (0, 0). Then you would
want to subtract that amount from the overall width and height of the image. In the
example above, it would be (456, 431). So the new ImageCopy() line would look like this:

ImageCopy($frame, $dragon, 21, 31, 0, 0, 456, 431);

Figure 8.17 Copying an image with the ImageCopy()
function.

188 Chapter 8 ■ GD Graphics Overview

So now you know how to copy an image that is either the same size or smaller than the
destination image. But what if you want to copy an image that is larger than the destina-
tion image? You would use the ImageCopyResized() or the ImageCopyResampled() functions. A
good example would be to take the framedDragon.jpg image that you just created and cre-
ate a 100 × 100 thumbnail of the image.

<?php

// Get our image resources

$image = ImageCreateFromJpeg(“frameDragon.jpg”);

// Create a true color image 100x100

$thumb = ImageCreateTrueColor(100, 100);

// Copy dragon onto frame

ImageCopyResized($thumb, $image, 0, 0, 0, 0, 100, 100, ImagesX($image),

ImagesY($image));

// Save the image and show it

ImageJpeg($thumb, “thumbFrameDragon.jpg”);

echo(“”);

?>

This starts off the same way as the last example, by getting the resource to an existing image.
Then you create a new true-color image that is 100 × 100 pixels. Now you copy the image
$image to the destination image $thumb. The seventh and eighth arguments are the desti-
nation image’s width and height. The ninth and tenth arguments are the source image’s
width and height. In this example you use the ImagesX() and ImagesY() functions that return
the width and height of the image resource. A full listing of all image functions can be found
in Appendix D. Take a look at Figure 8.18 to see the results of the example above.

Figure 8.18 Using the
ImageCopyResized() function.

Using Existing Images 189

I mentioned earlier in this chapter that the ImageCopyResized() function and the
ImageCopyResampled() function do the same thing. Well, technically they do the same thing,
but with one minor difference. After the ImageCopyResampled() function copies and resizes
the image, it also resamples it. The results are a crisper, cleaner image. In the upcoming code
example you will resize the image using ImageCopyResized() and then ImageCopyResampled().
After they are resized you will save them and compare the results.

<?php

// Get our image resources

$image = ImageCreateFromJpeg(“frameDragon.jpg”);

// Create a true color image 100x100

$thumb = ImageCreateTrueColor(250, 250);

$thumb2 = ImageCreateTrueColor(250, 250);

// Copy dragon onto frame

ImageCopyResized($thumb, $image, 0, 0, 0, 0, 250, 250, ImagesX($image),

ImagesY($image));

ImageCopyResampled($thumb2, $image, 0, 0, 0, 0, 250, 250, ImagesX($image),

ImagesY($image));

// Save the image and show it

ImageJpeg($thumb, “thumbFrameDragon1.jpg”);

ImageJpeg($thumb2, “thumbFrameDragon2.jpg”);

echo(“ ”);

?>

The results of the code example are shown in Figure 8.19.

The difference is noticeable. The top image is the one made with ImageCopyResized(). It has
quite a bit of artifacting and looks quite grainy compared to the bottom image, which was
created with ImageCopyResampled().

So why would you ever use ImageCopyResized()? Well, the only reason I can think of is
speed. But since you aren’t batching a ton of images at once, you might as well use the
ImageCopyResampled() function whenever speed isn’t a concern. After all, you do want to get
the best results you possibly can.

The final function to look at is the ImageCopyMerge() function. This function behaves
exactly like the ImageCopy() function with one very key difference. The extra parameter (int
percent) tells the image how opaque the image should be on the destination image. This
allows you to create some cool backgrounds or translucent images.

190 Chapter 8 ■ GD Graphics Overview

Figure 8.19 Results of the
ImageCopyResized() [top] and
ImageCopyResampled() [bottom]
functions.

Let’s merge our dragon image onto a white image with 20% opacity. This will allow most
of the white to show through while displaying a faint image of the dragon.

<?php

// Get our image resources

$dragon = ImageCreateFromJpeg(“dragon.jpg”);

// Create a true color white image

$whiteImage = ImageCreateTrueColor(512, 512);

$white = ImageColorAllocate($whiteImage, 255, 255, 255);

$black = ImageColorAllocate($whiteImage, 0, 0, 0);

$gray = ImageColorAllocate($whiteImage, 155, 155, 155);

ImageFill($whiteImage, 0, 0, $white);

Using Existing Images 191

// Copy dragon onto frame

ImageCopyMerge($whiteImage, $dragon, 0, 0, 0, 0, ImagesX($dragon), ImagesY($dragon),

20);

ImageTTFText($whiteImage, 36, 45, 201, 257, $black, “matisse_.ttf”, “Dragon!!!”);

ImageTTFText($whiteImage, 36, 45, 199, 254, $white, “matisse_.ttf”, “Dragon!!!”);

ImageTTFText($whiteImage, 36, 45, 200, 256, $gray, “matisse_.ttf”, “Dragon!!!”);

// Show the new image

header(“Content-type: image/jpeg”);

ImageJpeg($whiteImage);

ImageDestroy($whiteImage);

?>

The results of all of your hard work are shown in Figure 8.20.

Figure 8.20 The results of your hard work!

192 Chapter 8 ■ GD Graphics Overview

Conclusion
That’s it! You are now officially a dynamic image master in PHP. You learned how to cre-
ate indexed and true-color images. You also learned how to allocate colors to an image.
You became a god at drawing dynamic shapes onto your empty canvases. You also learned
how to generate text from a True Type Font and use it in your image. Finally, you learned
how to use existing images to your advantage to create some really cool-looking graphics.

Next up: creating a game called Battle Tank and creating dynamic terrain for your new
tank game!

chapter 9

Creating Battle Tank and
Using Dynamic Terrain

■ Planning Battle Tank

■ Creating the Graphics

■ Creating the Game Logic

■ Creating Dynamic Terrain

You have now become a master of using graphics. You have also become quite good
at using HTML in conjunction with PHP. In this chapter you will create a Battle
Tank game. Remember in the early ‘90s wh en an awesome game called Scorched

Earth was released? Well, Battle Tank will be your rendition of the game. Are you ready?

Planning Battle Tank
Before you just jump in and start coding you need to plan out how you want your game
to look and work. Since you want to create a Scorched Earth remake, you will need two
tank graphics. You will need some sort of playing field. You will need to be able to input
an angle and velocity so you can attempt to kill your opponent. All of that is just what the
user will see. It has nothing to do with the logic of the game.

So what will you need for the logic of the game? Well, you will need some sort of calcula-
tion for your bullets. You will need to detect if the opponent has been hit. If the opponent
has been hit you need to tell the user if he won or lost. You will also need to be able to con-
trol the computer. If the computer has not been hit then the computer gets to calculate a
move and fire at the opponent.

193

194 Chapter 9 ■ Creating Battle Tank and Using Dynamic Terrain

You will also need to determine what game states you will have. A good start is assuming
that you will need three game states. The three default game states you should have are:

■ Game Starting

■ Game Running

■ Game Over

If you need more game states you can add them later, but for now let’s assume those are
the only three you will need. This seems like a good start.

Now you must determine what graphics you will need. Before you get to creating dynamic
terrain you should create the game with all static images. You will want to define an image
for your tanks, an image for your terrain, and an image for the explosion that will occur
when a shot detonates. Just to make sure this is clear, you will need to define the following:

■ Image for Tank #1

■ Image for Tank #2

■ Image for the Terrain

■ Image for the explosion

When you create the explosion you will want to create an animated .gif. That way you have
a pseudo effect of real-time animation. You will learn how to do this in the next section
of this chapter, “Creating the Graphics.”

Since you will be doing calculations that deal with angle and velocity you will need some
sort of constant to pull down the bullet. That’s right, dust off all those old physics
books—you will need to define gravity. If you need any other constants you can add them
later just like with the game states.

So what are the objectives of the game? You want to generate a turn-based game that takes
angle and velocity as the user input. Once you have the angle and velocity you calculate
where the explosion will occur. If you hit the opponent, you win; if the opponent hits you,
then you lose. After you have a working version of the game you’ll want to go back and
add dynamic terrain with all of your newfound graphics knowledge. Based on this
description you will need six game states. You will use the three that you have already
determined plus three more.

■ Game Starting

■ Game Menu

■ Game Init

■ Game Play

■ Game Win

■ Game Over

Creating the Graphics 195

The game starting state tells the game to start the session then go to the menu. While you
are on the menu you are in the game menu state. Once you click to start a new game, that
takes you to the game init state. This isn’t a big deal for the first version of the game, but
it will come in handy when you start generating the terrain. Once you leave the game init
state you enter the game play state. This is where you are physically playing that game. If
you hit the opponent, then you enter the game win state, where you can display a cool
“you win” graphic. If you get hit by the opponent, then you enter the game over state
where you will put up a graphic telling the player that he has lost. Pretty simple, huh? Take
a look at Figure 9.1 to see a screen shot of what the final product should look like when
you are all through.

Creating the Graphics
For the most part I have created all the graphics for you and put them on the CD. You have
two tank graphics: one for the left tank and one for the right tank. They are called
tankLeft.gif and tankRight.gif on the CD. The tank graphics are the same tank, but one of
them is a 180 degree mirror of the other. They are both .gif files because they have a trans-
parent background; you could use .pngs if you like. The two tank graphics will be placed
on the screen using some cascading style sheets and a <div></div> layer. Don’t worry, I will
explain all of that when you get to coding.

Figure 9.1 A screen shot of Battle Tank.

196 Chapter 9 ■ Creating Battle Tank and Using Dynamic Terrain

The next part of the graphic you will be using is the sky background. The sky background
is called sky.jpg on the CD. The sky graphic is simply a gradient-blue background with
some cool clouds and a sun on it. The clouds are partially opaque to give them the trans-
parent look.

For this first version of the game I have created a graphic called terrain.jpg that is also
included on the CD. Terrain.jpg contains the sky background with the pre-drawn ground
over the background. That’s essentially all the graphics that you will work with for this
first version of the game.

Creating the Game Logic
Here is where you get down and dirty. This is where you take your plan and all your
graphics and put them to work; this is where you actually code the game. The first step to
take is to decide how you want to lay out your screen. Remember, you don’t have to do
this exactly like I do it. For this version I will have the game screen at the top of my table
and the user input at the bottom of my table. This seems like a logical layout to me, but
you can feel free to play with it however you like.

I am going to take this one step further and break out my rendering function into
three functions: one for rendering the terrain, one for rendering the tanks, and one for
rendering the actual user interface. I will call them RenderTerrain(), RenderTanks(), and
RenderInterface().

Let’s start off with the RenderTerrain() function.

function RenderTerrain()
{

printf(“<table border=\”0\” cellpadding=\”0\” cellspacing=\”0\” width=\”700\”
height=\”450\” bgcolor=\”#000000\”>”);

printf(“<tr>”);
printf(“<td align=\”left\” valign=\”top\”>”);
printf(“”);
printf(“</td>”);
printf(“</tr>”);
printf(“</table>”);

}

All that the RenderTerrain() function does is create a table that is 700 pixels wide and 450
pixels high and displays the terrain graphic in the middle of the table. Notice that I have
the terrain graphic defined as a constant. You will get to that shortly.

Take a look at the RenderTanks() function. The whole purpose of this function is to posi-
tion the tanks over the background to make them look like they are in the scene. To do

Creating the Game Logic 197

this you will use a <div></div> tag for each tank and specify the pixels from the top and
from the left where the tank should appear.

function RenderTanks()
{

global $gLeftTankLocation;
global $gRightTankLocation;

// Get locations

$gLeftTankLocation = $_SESSION[‘gLeftTankLocation’];

$gRightTankLocation = $_SESSION[‘gRightTankLocation’];

// Left tank

printf(“<div id=\”leftTank\” style=\”position: absolute; left: “ .

$gLeftTankLocation[“x”] . “px; top: “ . $gLeftTankLocation[“y”] . “px;\”>”);
printf(“”);
printf(“</div>”);

// Right tank

printf(“<div id=\”rightTank\” style=\”position: absolute; left: “ .

$gRightTankLocation[“x”] . “px; top: “ . $gRightTankLocation[“y”] . “px;\”>”);
printf(“”);
printf(“</div>”);

}

The first thing you do in this function is retrieve the location array from the session for
each tank. Next, you print the actual HTML tag to position the tank. To position the tank
absolutely you use a cascading style sheet. The cascading style sheet is defined with the
style attribute. You want to position the tanks absolutely using the position element. Next,
you will need to specify the number of pixels from the left of the browser and from the
top of the browser. You can do this with the left and top element.

style=”position:absolute; left: 200px; top: 200px;”

Now you can render the terrain and the tanks to the screen, but you still have no way to get
the user input. That is where the RenderInterface() function comes in. The RenderInterface()
function will render the form to the browser underneath the game.

function RenderInterface()
{

printf(“<table border=\”0\” cellpadding=\”0\” cellspacing=\”0\” width=\”700\”
bgcolor=\”#000000\”>”);

printf(“<tr>”);

printf(“<td align=\”right\” valign=\”top\” colspan=\”2\”>”);

198 Chapter 9 ■ Creating Battle Tank and Using Dynamic Terrain

printf(“<b class=\”white\”>COMMAND CONTROL”);

printf(“</td>”);

printf(“</tr>”);

printf(“<tr>”);

printf(“<td align=\”right\” valign=\”middle\”>”);

printf(“<b class=\”white\”>Angle:”);

printf(“</td>”);

printf(“<td align=\”left\” valign=\”top\”>”);

printf(“<input type=\”text\” width=\”80\” name=\”angle\”>”);

printf(“</td>”);

printf(“</tr>”);

printf(“<tr>”);

printf(“<td align=\”right\” valign=\”middle\”>”);

printf(“<b class=\”white\”>Velocity:”);

printf(“</td>”);

printf(“<td align=\”left\” valign=\”top\”>”);

printf(“<input type=\”text\” width=\”80\” name=\”velocity\”>”);

printf(“</td>”);

printf(“</tr>”);

printf(“<tr>”);

printf(“<td align=\”left\” valign=\”top\”>”);

printf(“ ”);

printf(“</td>”);

printf(“<td align=\”left\” valign=\”middle\”>
”);

printf(“<input type=\”submit\” name=\”btnFire\” value=\”FIRE!!!\”>”);

printf(“

</td>”);

printf(“</tr>”);

printf(“</table>”);
}

This creates a table that is 700 pixels wide with a black background. It puts three form ele-
ments in the table. The first form element is a text box to retrieve the angle. The second
form element is a text box to retrieve the velocity. The third and final form element is a
Submit button so you can tell your tank to fire.

That does it for the rendering functions for the game. Now take a look at the defines and
the globals that the game will use.

<?php
// Game States

Creating the Game Logic 199

define(“GAME_START”, 0);

define(“GAME_MENU”, 1);

define(“GAME_INIT”, 2);

define(“GAME_PLAY”, 3);

define(“GAME_WIN”, 4);

define(“GAME_OVER”, 5);

// Constants for calculations

define(“GRAVITY”, -9.8); // m/s/s

define(“PI”, 3.14159);

// Images

define(“TERRAIN_IMAGE”, “images/terrain.jpg”);

define(“LEFT_TANK_IMAGE”, “images/tankLeft.gif”);

define(“RIGHT_TANK_IMAGE”, “images/tankRight.gif”);

define(“EXPLOSION_IMAGE”, “images/explosion.gif”);

// Globals

global $gGameState;

global $gDifficulty;

global $gLeftTankLocation;

global $gRightTankLocation;

?>

First you define the game states, then the constant for gravity. This will be used in your
calculations for the bullet. Then you define all the images that you will use. For this first
iteration of the game you will have only one level of difficulty, but you should add the
global anyway so that when you do add more then one level of difficulty, the framework
is already there.

Now that all of the globals and constants are declared you can move on to the StartGame()
and EndGame() functions. The StartGame() function will start the session and initialize all the
variables for the session. The EndGame() function will unset all the variables and end the
session.

function StartGame()
{

global $gGameState;
global $gDifficulty;

if($gGameState == GAME_START)

{

$gGameState = GAME_MENU;

}

200 Chapter 9 ■ Creating Battle Tank and Using Dynamic Terrain

// Manage out session

session_start();

$bSession = $_SESSION[‘bSession’];

if(!isset($bSession))

{

$bSession = 1;

$_SESSION[‘bSession’] = $bSession;

$_SESSION[‘gDifficulty’] = $gDifficulty;

}

else

{

// Get the current game state
$gGameState = $_SESSION[‘gGameState’];

}
}

function EndGame()
{

global $gGameState;
global $gDifficulty;
global $gLeftTankLocation;
global $gRightTankLocation;

unset($gGameState);

unset($gDifficulty);

unset($gLeftTankLocation);

unset($gRightTankLocation);

unset($turn);
session_destroy();

}

The first thing that occurs in the StartGame() function is that the game state is switched
from GAME_START to GAME_MENU. This will take the user to the menu after the func-
tion has completed. Then the session is started. After the session is started, the StartGame()
function checks to see if this is a new session or an existing session. If the session is new,
it sets some variables. If the session already exists, it retrieves the game state.

The EndGame() function unsets all the global variables that were used throughout the game
and destroys the current session. This is a handy function because this allows the user to
start a completely new game without having to close the browser and open it again.

Once the player is dropped to the menu he can choose to start a new game. When a new
game is started it switches the state to GAME_INIT, where the GameInit() function is

Creating the Game Logic 201

called. This function is used primarily to place the tanks in their starting positions and to
switch the game state to GAME_PLAY.

function GameInit()
{

global $gGameState;
global $gLeftTankLocation;
global $gRightTankLocation;

// Set the tank locations

$gLeftTankLocation = array(“x” => 42, “y” => 243);

$gRightTankLocation = array(“x” => 628, “y” => 172);

$_SESSION[‘gLeftTankLocation’] = $gLeftTankLocation;

$_SESSION[‘gRightTankLocation’] = $gRightTankLocation;

$gGameState = GAME_PLAY;
}

The exact location of the tanks must be determined based on how you created your ter-
rain. For the preset terrain that I am using in this version of the game, the left tank is 42
pixels from the left of the browser and 243 pixels from the top of the browser. The right
tank is 628 pixels from the left of the browser and 172 pixels from the top of the browser.
These locations are important because they will be used in determining if a tank has been
hit by a bullet or not.

Now take a look at the main game loop. This function is called every single time the page
is loaded. It uses the current game state to determine what the game should do.

function Render()
{

global $gGameState;
global $gDifficulty;
global $gLeftTankLocation;
global $gRightTankLocation;

// Get locations

$gLeftTankLocation = $_SESSION[‘gLeftTankLocation’];

$gRightTankLocation = $_SESSION[‘gRightTankLocation’];

switch($gGameState)

{

case GAME_MENU:

202 Chapter 9 ■ Creating Battle Tank and Using Dynamic Terrain

{

// Display the menu

RenderMenu();

break;

}

case GAME_INIT:

{

// Init the Game

GameInit();

// Update Screen

Render();

break;

}

case GAME_PLAY:

{

// Get the input and calculate the hit point

if($_POST[‘btnFire’] != “”)

{

$explosionCoords = CalculateFire($_POST[‘angle’], $_POST[‘velocity’]);

// Check to see if there was a hit
if($explosionCoords[“x”] >= $gRightTankLocation[“x”] &&

$explosionCoords[“x”] <= $gRightTankLocation[“x”] + 47 && $explosionCoords[“x”] >=
$gRightTankLocation[“y”] && $explosionCoords[“y”] <= $gRightTankLocation[“x”] + 24)

{

// Hit the other tank

$gGameState = GAME_WIN;

Render();

return;

}

RenderExplosion($explosionCoords);

}

// Make the computer shoot

$explosionCoords = CalculateFire(-rand(30,50), -rand(70, 100));

if($explosionCoords[“x”] >= $gLeftTankLocation[“x”] &&

$explosionCoords[“x”] <= $gRightTankLocation[“x”] + 47 && $explosionCoords[“x”] >=
$gLeftTankLocation[“y”] && $explosionCoords[“y”] <= $gLeftTankLocation[“x”] + 24)

Creating the Game Logic 203

{

// Hit the other tank

$gGameState = GAME_OVER;

Render();

return;

}

RenderExplosion($explosionCoords);

// Render the terrain

RenderTerrain();

// Render the tanks

RenderTanks();

// Render the interface

RenderInterface();

break;

}

case GAME_WIN:

{

// Let the player know they won

printf(“WIN!!!”);

break;

}

case GAME_OVER:

{

// Let the player know the game is over

printf(“GAME OVER”);

break;

}

}

// Update our game state
$_SESSION[‘gGameState’] = $gGameState;

}

This function is doing quite a bit. The first thing it does is retrieve the locations of the two
tanks. After the locations of the tanks have been retrieved, it determines what state the
game is currently in. If the game is in the GAME_MENU state, the menu is rendered to
the browser. If the game is in the GAME_INIT state, the game is initialized by calling the
GameInit() function that you saw earlier in this chapter.

204 Chapter 9 ■ Creating Battle Tank and Using Dynamic Terrain

The GAME_PLAY state is where the whole game takes place. First it takes the user’s input.
It knows that the user has clicked the Fire button in the command center and it retrieves
the angle and velocity that the user entered. After that, it calculates where the explosion
should occur. If the user has hit the tank on the other end of the field, the game state is
switched to GAME_WIN, the screen is updated, and the function returns without pro-
cessing anything else.

However, if the user misses, the computer now gets to shoot. The computer randomly cal-
culates a coordinate that is within the playing field and calculates where its shot should
explode. If the shot hits the user, then the game state is set to GAME_OVER, the screen is
updated, and the function returns. If neither player was killed, the game returns control
to the user and awaits another angle and velocity to be entered. How cool is that?!

To actually calculate the distance the bullet will travel you need to use a little projectile
physics. First off, the velocity needs to be broken into velocity in the x direction and veloc-
ity in the y direction. To do this you multiply by the cosine and sine of the angle.

$vx = $velocity * cos($angle);
$vy = $velocity * sin($angle);

Next, you calculate the hang time of the projectile. (In this case the projectile is the shell
that is fired from the cannon.) You do this by multiplying 0.204 by the y component of
the velocity.

$time = 0.204 * $vy;

Now that you know the time the bullet is in the air you can calculate the maximum dis-
tance the bullet can go. To do this you multiply the x component of the velocity by the
total time to get the maximum range.

$xMax = $vx * $time;

The final y coordinate can be calculated by multiplying the y component of the velocity
by time and subtracting half of gravity multiplied by times squared.

$yMax = $vy * time - 0.5 * GRAVITY * ($time * $time);

That’s it. That is how you calculate where the explosion should occur. Now that you have
an x and y coordinate you need to just check to see if it is in the same range as the play-
ing field. If it is not, you need to put it there. Now you can render the explosion using a
cascading style sheet x pixels from the left of the browser and y pixels from the top of the
browser.

Figure 9.2 shows a shot of the game in action (well, as much action as can be portrayed in
a still frame).

Creating Dynamic Terrain 205

Figure 9.2 Battle Tank in action.

C a u t i o n

You will want to edit your php.ini file to turn off notices. You can do this by adding “& ~E_NOTICE”
to the error_reporting line.

Creating Dynamic Terrain
Creating the dynamic terrain is actually quite easy. I have included the background as
sky.jpg on the CD. You can use this to create your image. Once you have created your
image you just need to set the first two points to 0 and 450. This will put the first coordi-
nate at the bottom left of the graphic.

Once you have placed the very first coordinate at the bottom left of the graphic you need
to start at the next pixel you would like to put your next point on and traverse the entire
width of the image. While you are traversing the entire width of the image you will be gen-
erating two points. One is the x portion that should just be your loop counter, and the
other is a randomly generated y coordinate.

206 Chapter 9 ■ Creating Battle Tank and Using Dynamic Terrain

After you have traversed the whole width of the image you will want to set the last two
points. The last two points need to be the lower right corner of the image. In this case it
is (700, 450). Now you are all set to generate a filled polygon with all of the points that you
have just generated.

All of these procedures should go into the GameInit() function. Take a look at the follow-
ing code example to see the new GameInit() function:

function GameInit()
{

global $gGameState;
global $gLeftTankLocation;
global $gRightTankLocation;

$terrain = ImageCreateFromJpeg(“images/sky.jpg”);

$points[0] = 0;

$points[1] = 450;

$i = 2;

for($x = 10; $x < 710; $x = $x + 20)

{

$points[$i] = $x;

$points[$i+1] = rand(150, 350);

$i = $i + 2;

}

$points[count($points)-1] = 700;

$points[count($points)] = 450;

$brown = ImageColorAllocate($terrain, 139, 164, 125);

ImageFilledPolygon($terrain, $points, sizeof($points)/2, $brown);

ImageJpeg($terrain, “images/temp.jpg”);

ImageDestroy($terrain);

$leftY = (($points[3] + $points[5])/2) - (($points[2] + $points[4])/2) - 10;
$rightY = (($points[count($points)-4] + $points[count($points)-3])/2) -

$points[count($points)-4];

// Set the tank locations

$gLeftTankLocation = array(“x” => 42, “y” => $leftY);

Creating Dynamic Terrain 207

$gRightTankLocation = array(“x” => 628, “y” => $rightY);

$_SESSION[‘gLeftTankLocation’] = $gLeftTankLocation;
$_SESSION[‘gRightTankLocation’] = $gRightTankLocation;

$gGameState = GAME_PLAY;
}
The very first event that occurs in the GameInit() function is a new image is generated
from the existing sky background by using:

$terrain = ImageCreateFromJpeg(“images/sky.jpg”);
Next you set the first set of coordinates.
$points[0] = 0;
$points[1] = 450;
Now that you are starting in the lower left corner of the image you need to start 10
pixels into the width of the image and traverse all the way across the image to 700.
$i = 2;
for($x = 10; $x < 710; $x = $x + 20)
{

$points[$i] = $x;
$points[$i+1] = rand(150, 350);
$i = $i + 2;

}

This loop generates a random number every 20 pixels between 150 pixels and 350 pixels.
This is what gives you the x and y points for the next logical coordinate.

Now that you have traversed all the way across the image you need to set the final point.
Since you want the polygon to fill all the way to the bottom, you need to set the final point
to (700, 450).

$points[count($points)-1] = 700;
$points[count($points)] = 450;

Now you simply draw your polygon onto the canvas by using the ImageFilledPolygon()
function. After you have drawn the polygon you need to save the image to disk. The rea-
son you save the image to disk is because you only want to generate new terrain when you
first start a game. You don’t want the terrain to be changing every time someone fires his
cannon.

$brown = ImageColorAllocate($terrain, 139, 164, 125);

ImageFilledPolygon($terrain, $points, sizeof($points)/2, $brown);

ImageJpeg($terrain, “images/temp.jpg”);
ImageDestroy($terrain);

208 Chapter 9 ■ Creating Battle Tank and Using Dynamic Terrain

Now all that is left is to position the tanks. In this example, the tank’s x coordinate is
always the same and the y coordinate is calculated with the average of two of the y points.
This is not a totally accurate way to position the tank, but it does get the tank close
enough. If you want a more accurate method you need to take three or four points and
reposition the tank based on the x coordinate also.

$leftY = (($points[3] + $points[5])/2) - (($points[2] + $points[4])/2) - 10;

$rightY = (($points[count($points)-4] + $points[count($points)-3])/2) -

$points[count($points)-4];

// Set the tank locations

$gLeftTankLocation = array(“x” => 42, “y” => $leftY);

$gRightTankLocation = array(“x” => 628, “y” => $rightY);

Now that you’ve calculated the x and y coordinates for your tank positions you need to
save that information to the session.

$_SESSION[‘gLeftTankLocation’] = $gLeftTankLocation;

$_SESSION[‘gRightTankLocation’] = $gRightTankLocation;

After the coordinates are saved to the session all that is left to do is to start the game by
switching the game state.

$gGameState = GAME_PLAY;

Figure 9.3 shows a screen shot of the game with some dynamic terrain being generated.

Figure 9.3 Generating dynamic terrain.

Conclusion 209

Conclusion
You have successfully created a fully dynamic PHP game that is a pretty good clone of the
classic Scorched Earth. There are, however, several things that you can do to make this
game a whole lot better. The first thing you can do is get the dynamic positioning of the
tanks more accurate. The second thing you can do is add some collision detection to see
if the bullet has hit the terrain. The third step you could take to make the game better is
to dynamically remove chunks of terrain hit by the bullet. You could probably figure out
something with an arc to do this.

You are getting extremely good at this PHP stuff, and you should be proud of yourself.
Give yourself a big pat on the back. In the upcoming chapters you will perform some odds
and ends. For example, in the next chapter you will look at how to use sockets in PHP. In
Chapter 11 you will start to learn about MMORPG games and begin to create your own
mini game. Sound like fun? Good, then let’s get to it.

This page intentionally left blank

Extras and
Final Projects

Chapter 10
PHP and Sockets .213

Chapter 11
Kiddy Cartel—Creating Your Own MMO .229

Chapter 12
Building Your PHP Skills .257

PART IV

This page intentionally left blank

chapter 10

PHP and Sockets

■ Socket Basics

■ Creating a Server

■ Creating a Client

In this chapter you will explore the fascinating and sometimes confusing world of
sockets. Sockets must be one of the most underused components in PHP. Today you’ll
take a look at how to create a server to which a client can connect, how to connect to

a server from a client using sockets, and how to process information on the server and
send it to the destination client.

Believe it or not, you have been using sockets the entire time you’ve been programming
in PHP. The server is the HTTP server that you connect to, and the client is the Web
browser you are using to connect to the server. This is a single client/server relationship.

Socket Basics
PHP uses the Berkley sockets library to make its connections. You can think of a socket as
nothing more than a data structure. You use this socket data structure to start a conversa-
tion between a client and a server. The server is always listening to open a new conversa-
tion. When a client wants to talk to the server, it opens a conversation through a specific
port on which the server is listening. When the server receives the client’s request it com-
pletes the connection, thus completing the cycle. Now the client can send information to
the server and the server can send information to the client.

213

214 Chapter 10 ■ PHP and Sockets

To create a socket you will need three variables: a protocol, a socket type, and a common
protocol type. There are three protocols that you can choose from when creating a socket.
Take a look at Table 10.1 for the names of the protocols and a description of what each
protocol does.

When you create your own server you will use the AF_INET protocol. There are five
socket types to choose from in the Berkley socket library. Please refer to Table 10.2 for the
constant and a description of the socket type.

The final element to creating a socket is to define the type of common protocol that the
connection should use. Table 10.3 lists the name and the description of the three common
protocol types.

Protocols

Name/Constant Description

AF_INET

AF_INET6

AF_UNIX

Name/Constant Description

SOCK_STREAM

SOCK_DGRAM
datagrams

SOCK_RAW

SOCK_RDM

Table 10.1

The most common of the protocols that are used when creating sockets.
AF_INET uses TCP or UDP and an IPv4 address.

Similar to the AF_INET but uses an IPv6 address instead of an IPv4 address.

A local communication protocol. This is specific to UNIX and Linux, and it uses
the file system to define its socket connections. This protocol is rarely used.
When it is used, the client and server are usually on the same machine.

Table 10.2 Socket Types

This socket type provides sequenced, reliable, full-duplex connections based on
byte streams. This is the most commonly used socket type. This is also the
socket type that the TCP common protocol uses.

This socket type provides connectionless, fixed-length transmissions called
. This socket type is fairly unreliable. UDP uses this socket type for its

connections.

SOCK_SEQPACKET This socket type provides a two-way, reliable connection for sending fixed-
length transmissions. The receiver is required to read the entire packet for every
read call made when using this socket type.

This socket type provides raw network protocol access. The ICMP common
protocol (ping, traceroute, and so on) uses this socket type.

This socket type is rarely used and is not implemented on most operating
systems. This provides a datagram layer that does not guarantee the ordering
of your packets.

Socket Basics 215

Common Protocols

Name/Constant Description

ICMP
to report errors in communication.

UDP

TCP

Table 10.3

The Internet Control Message Protocol. It is used mostly by gateways and hosts

The User Datagram Protocol. As mentioned previously, this is a connectionless,
unreliable way to transmit data.

The Transmission Control Protocol. This is the most common and most reliable
of the common protocols. TCP guarantees that its packets will arrive to the
recipient. If there were errors during transmission, TCP re-broadcasts the
packets to make sure they show up error free.

Now that you know the three elements for creating a socket, take a look at the socket_create()
function that PHP uses to create a socket. The socket_create() function takes three parame-
ters: a protocol, a socket type, and a common protocol. The socket_create() function returns
a resource to the socket if it was created successfully, or it returns false if the socket was not
created successfully.

resource socket_create(int protocol, int socketType, int commonProtocol);

Now that you can create a socket, how can you use it? PHP provides several functions to
handle sockets. You can bind sockets to an IP, listen for communication on a socket, accept
a socket; the list just goes on and on. Start by taking a look at an example to see what func-
tions you will need to create, accept, and listen to a socket.

<?php
$commonProtocol = getprotobyname(“tcp”);

$socket = socket_create(AF_INET, SOCK_STREAM, $commonProtocol);

socket_bind($socket, ‘localhost’, 1337);

socket_listen($socket);

// More socket functionality to come
?>

The example above is a start to creating your own server. The first line of the example,

$commonProtocol = getprotobyname(“tcp”);

gets the protocol type that you are going to use by name. In this case you want to use
the TCP common protocol. If you wanted to use UDP or ICMP you would pass “udp”

216 Chapter 10 ■ PHP and Sockets

or “icmp” as the parameter to the getprotobyname() function. An alternative to using the
getprotobyname() function is specifying either SOL_TCP or SOL_UDP as the final argu-
ment to the socket_create() function.

$socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP);

The second line of the example creates the socket and returns the instance of the socket
resource. After you have the instance of the socket resource, you need to bind the socket
to a certain port and IP address.

socket_bind($socket, ‘localhost’, 1337);

In this case you are binding the socket to your local computer (127.0.0.1) and you are
binding the socket to port 1337. After everything is created and bound you must listen for
a connection to come in to the socket.

socket_listen($socket);

These are just four of the functions used in the wonderful world of sockets. Take a look at
Table 10.4 to see all the functions that sockets use.

Function Name Description

socket_accept(resource socket) resource

socket_bind(resource socket, string address, bool
int port) address and port specified. socket_bind()

socket_clear_error([resource socket]) void

socket_close(resource socket) void

socket_connect(resource socket, string address, bool
[int port])

failed.

socket_create_listen(int port, [int backlog]) resource

length of the queue of pending

Table 10.4 Socket Functions

Returns

After you have created a socket, bound it,
and started listening on that socket, this
function will accept incoming connections.

This binds the socket resource to the

will return TRUE if it succeeds and FALSE if
it fails.

This will clear the errors on the specified
socket. If a socket is not specified then it
clears the global last socket error.

Closes the created socket.

Attempts to connect to the socket
resource. Returns TRUE if connection
succeeded and FALSE if the connection

Creates a new AF_INET socket that listens
on the specified port. Backlog defines the

connections.

Socket Basics 217

(continued)

Function Name Description

socket_create_pair(int protocol, int socketType, bool
int commonProtocol, array &fd) stored in the array fd

socket_create(int protocol, int socketType, resource
int commonProtocol)

socket_get_option(resource socket, int level, mixed
int optname)

socket_getpeername(resource socket, bool
string &address, [int &port])

socket_getsockname(resource socket, bool
string &address, [int &port])

socket_iovec_add(resource iovec, int iov_len) bool

socket_iovec_alloc(int num_vectors) resource

socket_iovec_delete(resource iovec, int iov_pos) bool Deletes the allocated iovec.

socket_iovec_fetch(resource iovec, int iovec_pos) string Returns the data held in the iovec_pos in

socket_iovec_free(resource iovec) bool

socket_iovec_set(resource iovec, bool Sets the data at iovec_position to the new
int iovec_position, string new_val)

socket_last_error([resource socket]) int Retrieves the last error code that occurred

returns the last error that occurred for that

socket_listen(resource socket, [int backlog]) bool Listens for a connection to the specified

socket_read(resource socket, int length, string
[int type])

normal string with normal escape

socket_readv(resource socket, resource iovec) bool Reads from the fd array using the

Table 10.4 Socket Functions

Returns

This creates a pair of sockets that are
. There is no way to

distinguish between the two sockets.

Creates a new socket.

This function retrieves the options for a
socket.

This function returns the remote IP
address of the connecting peer computer.

This function returns the local IP address
of the socket.

This function adds a new vector to the
scatter/gather array.

This function builds a iovec structure for
use with sendmsg, recvmsg, writev, and
readv.

the specified resource.

Frees the iovec resource.

value.

on any socket. If a socket is specified, it

socket.

socket. Backlog defines the length of the
queue for pending connections.

This reads length bytes from the specified
socket. Type can be PHP_BINARY_READ
or PHP_NORMAL_READ. If
PHP_BINARY_READ is used, the string is
a binary string; otherwise the string is a

characters.

scatter/gather array.

218 Chapter 10 ■ PHP and Sockets

(continued)

Function Name Description

socket_recv(resource socket, string &buffer, int Receives data into buffer on a connected
int length, int flags)

socket_recvfrom(resource socket, string &buffer, int
int length, int flags, string &name, [int &port])

socket_recvmsg(resource socket, resource iovec, bool
array &control, int &controlLength, int &flags,
string & address. [int &port])

socket_select(array &read, array &write, array int
& except, int tv_sec, [int tv_usec])

the read

write
except

socket_send(resource socket, string buffer, int
int length, int flags)

socket_sendmsg(resource socket, resource iovec, bool
int flags, string address, [int port])

socket_sendto(resource socket, string buffer, int
int length, int flags, string address,
[int port])

socket_set_block(resource socket) bool

socket_set_nonblock(resource socket) bool

socket_set_option(resource socket, int level, bool

socket_shutdown(resource socket, [int how]) bool

how

socket_strerror(int errorNumber) string Returns a description of the specified error

socket_write(resource socket, string buffer, int
[int length])

socket_writev(resource socket, resource iovec) bool Writes to the fd array using the
scatter/gather

Table 10.4 Socket Functions

Returns

socket.

Receives data from a socket whether or
not the socket is currently connected.

This function is used to receive messages
on a socket that uses iovectors.

This function accepts an array of sockets
to watch. The sockets that are passed in

array are watched for characters
that become available for reading. The

array is watched for blocks that are
written to. The arrays are watched
for exceptions.

This function sends data to a connected
socket.

Sends a message to a socket.

This function sends length of the buffer
through the socket to the specified
address.

Sets the blocking mode on a socket.

Sets non-blocking mode on a socket.

Sets the socket options for a socket.
int optname, mixed optval)

This function allows you to shut down
reading, writing, or both for the specified
socket. can be 0, 1, or 2.

number.

Writes the buffer to the socket.

array.

* At the time of this writing, www.php.net did not have definitions for every socket function.

Socket Basics 219

Those are all the functions that PHP offers for use with sockets. You should already have
sockets enabled, but if you don’t, then edit the php.ini file and uncomment the line that
says:

extension=php_sockets.dll

If you don’t uncomment this line you could load the extension dynamically using the fol-
lowing code:

<?php
if(!extension_loaded(‘sockets’))
{

if(strtoupper(substr(PHP_OS, 3)) == “WIN”)
{

dl(‘php_sockets.dll’);

}

else

{

dl(‘sockets.so’);
}

}
?>

If you don’t know whether sockets are enabled you can always use the phpinfo() function
to determine if sockets are enabled. There should be a section that looks like Figure 10.1.

Figure 10.1 Viewing the phpinfo() for sockets.

220 Chapter 10 ■ PHP and Sockets

Creating a Server
Now go back to the earlier example and complete it. To do this you simply need to listen
to a particular socket and then process the user(s) connecting to it.

<?php

$commonProtocol = getprotobyname(“tcp”);

$socket = socket_create(AF_INET, SOCK_STREAM, $commonProtocol);

socket_bind($socket, ‘localhost’, 1337);

socket_listen($socket);

// Accept any incoming connections to the server

$connection = socket_accept($socket);

if($connection)

{

socket_write($connection, “You have connected to the socket...\n\r”);
}
?>

You will want to run this example from a command prompt. The reason for this is that
you are creating a server, not a Web page. If you try to run this script from a Web browser,
the script will most likely time out after 30 seconds. You could set an infinite time out by
using the following line of code, but it is better to run the server from a command prompt:

set_time_limit(0);

To run your scripts from a command line you simply type:

php.exe example01_server.php

If you have not mapped the path to the PHP interpreter you will need to specify the path
before php.exe. Once you have started the server you can test the connection by telneting
to port 1337. You should see results that resemble Figure 10.2

The problem with this server is threefold: One, it doesn’t accept multiple connections.
Two, it performs only one command that is very useful. Finally, you cannot yet connect to
this server through your Web browser.

The first problem is easy to solve if you were using an application that didn’t have to
reconnect to the server every time you clicked something. But since you are using a Web
page to connect to the server, this poses a very large problem. You have to make your
server accept a connection, write data to the client (if there is any to write), close the con-
nection, and wait for another connection.

Creating a Server 221

Figure 10.2 Your first server.

Let’s do exactly that. Take a look at the following code example to see the new server:

<?php
// Set up our socket
$commonProtocol = getprotobyname(“tcp”);

$socket = socket_create(AF_INET, SOCK_STREAM, $commonProtocol);

socket_bind($socket, ‘localhost’, 1337);

socket_listen($socket);

// Initialize the buffer
$buffer = “NO DATA”;

while(true)
{

// Accept any connections coming in on this socket

222 Chapter 10 ■ PHP and Sockets

$connection = socket_accept($socket);

printf(“Socket connected\r\n”);

// Check to see if there is anything in the buffer

if($buffer != “”)

{

printf(“Something is in the buffer...sending data...\r\n”);
socket_write($connection, $buffer . “\r\n”);
printf(“Wrote to socket\r\n”);

}

else
{

printf(“No Data in the buffer\r\n”);

}

// Get the input

while($data = socket_read($connection, 1024, PHP_NORMAL_READ))

{

$buffer = $data;
socket_write($connection, “Information Received\r\n”);
printf(“Buffer: “ . $buffer . “\r\n”);

}

socket_close($connection);
printf(“Closed the socket\r\n\r\n”);

}
?>

This is what the server does. It initializes the socket and the buffer that you use to receive
and send data. Then it waits for a connection. Once a connection is created it prints
“Socket connected” to the screen the server is running on. The server then checks to see if
there is anything in the buffer; if there is, it sends the data to the connected computer.
After it sends the data it waits to receive information. Once it receives information it stores
it in the data, lets the connected computer know that it has received the information, and
then closes the connection. After the connection is closed, the server starts the whole
process again.

Take a look at Figure 10.3 to see the results of the server.

Creating the Client 223

Figure 10.3 Results of the new server.

Creating the Client
To solve the second problem is very easy. You need to create a PHP page that connects to
a socket, receive any data that is in the buffer, and process it. After you have processed the
data in the buffer you can send your data to the server. When another client connects, it
will process the data you sent and the client will send more data back to the server.

N o t e

This is simply an example to demonstrate a use of sockets. This is by no means production-level
code to be used on a public game.

<?php
// Create the socket and connect
$socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP);
$connection = socket_connect($socket,’localhost’, 1337);

while($buffer = socket_read($socket, 1024, PHP_NORMAL_READ))
{

if($buffer == “NO DATA”)
{

echo(“<p>NO DATA</p>”);
break;

}

else

{

224 Chapter 10 ■ PHP and Sockets

// Do something with the data in the buffer
echo(“<p>Buffer Data: “ . $buffer . “</p>”);

}
}

echo(“<p>Writing to Socket</p>”);

// Write some test data to our socket

if(!socket_write($socket, “SOME DATA\r\n”))

{

echo(“<p>Write failed</p>”);
}

// Read any response from the socket

while($buffer = socket_read($socket, 1024, PHP_NORMAL_READ))

{

echo(“<p>Data sent was: SOME DATA
 Response was:” . $buffer . “</p>”);
}
echo(“<p>Done Reading from Socket</p>”);
?>

This example client connects to the server using all the code that you have seen before.
The client reads the data. If this is the first time through the loop on the first connection,
then the server will send “NO DATA” back to the client. If this occurs, the client continues
on. The client sends its data to the server. After the data has been sent to the server the
client waits for a response. Once it receives a response it writes the response to the screen.

C a u t i o n

You will want to edit your php.ini file to turn off notices. You can do this by adding “& ~E_NOTICE”
to the error_reporting line.

T i p

When using PHP_NORMAL_READ the line of data is considered done once the \r\n escape charac-
ters have been sent.

Integrating Sockets with Battle Tank
Now that you have all this cool code that deals with sockets, you can integrate it into the
Battle Tank game you created in the previous chapter. To do this is very simple. Obviously,
the first thing you will want to do is connect to the socket every time you click the Fire

Integrating Sockets with Battle Tank 225

button or start a new game. If you click the Fire button you will want to send your data to
the server.

Once your data has reached the server you will want to query the server for the next coor-
dinates of the bullet, and then render the game with the new coordinates. Here is the new
Render() function for Battle Tank:

function Render()
{

// Create the socket and connect
$socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP);
$connection = socket_connect($socket,’localhost’, 1337);

global $gGameState;

global $gDifficulty;

global $gLeftTankLocation;

global $gRightTankLocation;

// Get locations

$gLeftTankLocation = $_SESSION[‘gLeftTankLocation’];

$gRightTankLocation = $_SESSION[‘gRightTankLocation’];

switch($gGameState)
{

case GAME_MENU:

{

// Display the menu

RenderMenu();

break;

}

case GAME_INIT:

{

// Init the Game

GameInit();

// Update Screen

Render();

break;

}

case GAME_PLAY:

{

226 Chapter 10 ■ PHP and Sockets

//printf(session_id());

// Get the input and calculate the hit point

if($_POST[‘btnFire’] != “”)

{

$explosionCoords = CalculateFire($_POST[‘angle’], $_POST[‘velocity’]);

if(!socket_write($socket, $explosionCoord[0] . “,” .
$explosionCoords[1] . “\r\n”))

{
echo(“<p>Write failed</p>”);

}

// Check to see if there was a hit
if($explosionCoords[“x”] >= $gRightTankLocation[“x”] &&

$explosionCoords[“x”] <= $gRightTankLocation[“x”] + 47 && $explosionCoords[“x”] >=
$gRightTankLocation[“y”] && $explosionCoords[“y”] <= $gRightTankLocation[“x”] + 24)

{

// Hit the other tank

$gGameState = GAME_WIN;

Render();

return;

}

RenderExplosion($explosionCoords);

}

while($buffer = socket_read($socket, 1024, PHP_NORMAL_READ))
{

if($buffer == “NO DATA”)

{

echo(“<p>NO DATA</p>”);
break;

}

else

{

// Do something with the data in the buffer
$explosionCoords = split($buffer, “,”);

}
}

Integrating Sockets with Battle Tank 227

// Make the other players shot
if($explosionCoords[0] >= $gLeftTankLocation[“x”] && $explosionCoords[0]

<= $gRightTankLocation[“x”] + 47 && $explosionCoords[1] >= $gLeftTankLocation[“y”] &&
$explosionCoords[1] <= $gLeftTankLocation[“x”] + 24)

{

// Hit the other tank

$gGameState = GAME_OVER;

Render();

return;

}

RenderExplosion($explosionCoords);

// Render the terrain

RenderTerrain();

// Render the tanks

RenderTanks();

// Render the interface

RenderInterface();

break;

}

case GAME_WIN:

{

// Let the player know he won

printf(“WIN!!!”);

break;

}

case GAME_OVER:

{

// Let the player know the game is over

printf(“GAME OVER”);

break;

}

}

// Update the game state
$_SESSION[‘gGameState’] = $gGameState;

}

228 Chapter 10 ■ PHP and Sockets

That’s it! As I said before, this is not the best way to do this, but it works for demonstrat-
ing PHP’s socket capabilities. There are some cool things you could do by creating sock-
ets that talk to Flash pieces through your own PHP server, which is a more common way
to use sockets.

Conclusion
Whether or not you realize it, you have done a tremendous amount of learning in this
chapter. If you would like to learn more about sockets I suggest picking up a more
in-depth book on sockets. You can also refer to www.php.net, where you’ll find more in-
depth explanations of all the functions you’ve seen in this chapter.

In the next chapter you will be creating your own MMORPG game. Sound like fun? Well
then, turn the page and get moving!

chapter 11

Kiddy Cartel —

Your Own MMO

Creating

■ Installing mySQL

■ Relational Databases: A Quick Rundown

■ Kiddy Cartel: The Rules and Specifications

■ Creating Your Base Actions

■ Creating a Command with Sub-Commands

■ Creating a Command without Sub-Commands

■ Look at All of the Commands…Now What?

In this chapter you will learn what goes into a massively-multiplayer online (MMO)
game. At the end of this chapter you will have created an awesome MMO game called
Kiddy Cartel. The object of this game is to take on the persona of a kid and build an

empire through purchasing lemonade stands, mowing lawns, and attacking competing
neighborhoods. Sound like fun? Let’s get started.

First, a few notes about Kiddy Cartel. This game uses turns. That means that every time
you perform an action it takes n number of turns. It is also a text-based game, so if you
want graphics you will need to add them. Each account you create will control only one
neighborhood, so if you want to control multiple neighborhoods you’ll need to create
multiple accounts.

Also, this game will need to use a relational database, so what better relational database
than mySQL? It is freely available on www.mysql.com, and mySQL Version 4 is included
on the CD that came with this book. You will also need a library call PEAR. PEAR stands
for PHP Extension and Application Repository.

229

230 Chapter 11 ■ Kiddy Cartel—Creating Your Own MMO

If you installed PHP from the CD, then PEAR and its default libraries and manager are
already installed on your machine if you are running a UNIX platform. If you’re running
a Windows platform you will need to install the PEAR manager.

To install the PEAR manager, simply run the go-pear.bat file in the setup directory after
you have installed PHP. If you did not install PHP from the CD included in this book, then
I suggest you go to http://pear.php.net and view the installation section of the documen-
tation to install PEAR.

Installing mySQL
Installing mySQL on Windows is a very simple task. All you need to do is to run the
setup.exe program that comes with the Windows distribution. Once you have installed
mySQL you will need to run the WinMySQLAdmin executable to set up the my.ini file.

To install mySQL on Linux, the easiest way is to use an RPM package. For the purpose of
this book you will only need to use the server and client RPM packages. If you would like
to install other packages you can download them at www.mysql.com.

To install the client and server as a standard install you should use the following line:

%> rpm -i MySQL-server-VERSION.i386.rpm MySQL-client-VERSION.i386.rpm

Once the package is finished installing you should find a new directory under /var/lib/
called mysql. The mySQL install also adds the proper lines to the /etc/init.d/ file so the
mySQL server will start on boot.

N o t e

If you are upgrading from a previous version of mySQL you will need to stop the current running
service in order to install the new mySQL.

Once mySQL is installed you need to grant permission to a user and to tables. If you skip
this step you will only be able to connect to your databases as root. You can add a user later
but I recommend that you do this now. On Windows you need to type the following at
the command prompt:

C:\> cd\mysql\scripts
C:\> mysql_install_db
C:\> cd\mysql\bin
C:\> mysqld_safe —user=mysql &

Where --user=mysql you can put any user you want. For example, --user=mmodb would
set up a user called mmodb.

Relational Databases: A Quick Rundown 231

If you are installing mySQL on a Linux machine you will need to type the following at a
command prompt:

%> ./scripts/mysql_install_db
%> cd mysql_installation_directory
%> ./bin/mysqld_safe --user=mysql &

If you have problems creating your user and granting your user permissions to the data-
base you should look at the documentation at www.mysql.com to see suggestions for
troubleshooting.

Now go ahead and create the database that Kiddy Cartel will use to store its data. Go to a
command prompt and navigate to the directory where you installed mySQL. Once you get
in that directory, type the following:

./bin/mysqladmin create kiddycartel

This will create a new database called kiddycartel. Now you need to add a table to the data-
base. To do that, first take a quick look at the T-SQL language.

Relational Databases: A Quick Rundown
Relational databases are databases that know of other tables. You absolutely need to use a
relational database to make a MMO game. The reason for this is that MMO games quickly
get complicated and if you are always trying to loop through files to find a record, your
game will suffer in performance and I guarantee that you will lose track of what data you
are trying to store and retrieve.

With that said, relational databases use a language called T-SQL to operate on databases.
T-SQL allows you to create tables in your databases, and to insert, update, and delete
records, just to mention the most common functions. With these four options you can get
started on creating the Kiddy Cartel game, although these four operations will not make
you an expert in relational databases.

N o t e

This is not a complete tutorial of T-SQL. If you would like to learn more about relational databases
you should explore some relational database books and online tutorials.

To create a table using T-SQL you need to use the CREATE TABLE function. The CREATE TABLE
function takes the column definitions as parameters and a table name. The easiest way to
explain how to create a table is to show you. Open up a command prompt and navigate
to the mysql\bin directory. Once you are in that directory, type the following:

mysql

232 Chapter 11 ■ Kiddy Cartel—Creating Your Own MMO

This should start the mySQL command prompt. Once you are in the mySQL command
prompt you need to connect to a database, so type the following:

connect kiddycartel

This will connect you to the Kiddy Cartel database. Now that you are in the database you
can add the necessary tables to the database. You will need to enter the following lines into
the command prompt to create the neighborhoods table:

CREATE TABLE neighborhoods
(
PlayerName CHAR(64) NOT NULL PRIMARY KEY,
NeighborhoodName CHAR(64) NOT NULL,
Password CHAR(64) NOT NULL,

Bullies INT DEFAULT 0,
PaperBoys INT DEFAULT 0,

LawnMowers INT DEFAULT 1,
LemonadeStands INT DEFAULT 0,
Bakeries INT DEFAULT 0,

Money INT DEFAULT 300,
Lemonade INT DEFAULT 100,
Cookies INT DEFAULT 50,

WaterBalloons INT DEFAULT 0,
PlasticBats INT DEFAULT 0,
SlingShots INT DEFAULT 0,

LastTurnCredited DATETIME NOT NULL,
Turns INT DEFAULT 50
);

This will create a 16-column table called neighborhoods. The first column in the database
stores the player name and is called PlayerName. You specify the data type of the column
after you define the name of the column. The PRIMARY KEY keywords tell mySQL that
this is a unique column and that is what should be used to identify the records in this
table.

N o t e

The Kiddy Cartel database consists of only one table. This game is for example purposes only and
not to show you proper relational database design.

Kiddy Cartel: The Rules and Specifications 233

Now that you have created the database and a table, you can insert records into the table.
To insert a record into the table you will use the INSERT INTO function.

INSERT INTO neighborhoods(PlayerName, NeighborhoodName, Password, LastTurnCredited)
VALUES(‘MyPlayer’, ‘MyTown’, ‘mmorocks’, GetDate())

This will insert a record that has the values MyPlayer as the player name, MyTown as the
neighborhood name, mmorocks as the password, and the current date and time for the
last turn credited column. The rest of the columns will contain the default values speci-
fied in the table definition.

Let’s say you want to update the MyPlayer record and change its password. To do that you
will need to use the UPDATE function. The UPDATE function takes the table name and then the
column you want to update. For example:

UPDATE neighborhoods SET Password = ‘newPassword’ WHERE PlayerName = ‘MyPlayer’

This will update the record associated with MyPlayer. Deleting a record is just as simple.
You use the DELETE FROM function. The DELETE FROM function takes a table name as its main
parameter.

DELETE FROM neighborhoods WHERE PlayerName = ‘MyPlayer’

The line above will delete the MyPlayer record. If you did not specify a WHERE clause in the
DELETE FROM function it would delete all the records in the specified table. So make sure you
always specify a WHERE clause unless you don’t mind losing all of your data.

That is a very quick rundown of some basic T-SQL functions. By no means is this a com-
plete how-to on relational databases. But now that you have a general idea about what T-
SQL is, and now that you have a database created for Kiddy Cartel, let’s take a more
in-depth look at the specifications for Kiddy Cartel.

Kiddy Cartel: The Rules and Specifications
Since Kiddy Cartel is a massively-multiplayer game, each player will be controlled by a
human; there will be no computer players. Once you have created a neighborhood to con-
trol you will be given a stock of lemonade and a stock of cookies. You will also be given
one lawn mower so you can generate more money. You will start off with $300 and 50
turns.

The object of the game is to get as many resources and as much money as possible. To do
this you will need to create lemonade stands, bake cookies, mow lawns, spy, and take over
other neighborhoods. There are three main rules that apply to the coding of this game.

1. Turns – A certain number of turns will be generated for a player each hour. Players
can stockpile turns for as long as they want.

234 Chapter 11 ■ Kiddy Cartel—Creating Your Own MMO

2. Resource Generators – You will need to generate resources. Each resource genera-
tor is able to generate a specified amount of resources.

3. Actions – This is the heart of the game. Each action will take a number of turns.
An action can require a number of resources or a number of minions.

To play this game you will need some sort of interface. You will be using forms to execute
all the actions in the game. You can see the interface that will be used for the game in Fig-
ure 11.1. Take a look at the actions the player can perform during the course of the game.

■ Purchase a Lemonade Stand

■ Purchase a Simple Bake Oven

■ Purchase a Lawn Mower

■ Purchase Water Balloons

■ Purchase Plastic Bats

■ Purchase a Slingshot

■ Create a Bully

■ Create a Paper Boy

■ Mow Lawns

■ Mix Lemonade

Figure 11.1 The Kiddy Cartel game interface.

Creating Your Base Actions 235

■ Bake Cookies

■ Destroy a Property

■ Scare a Kid

■ Steal Property

■ Spy on a Kid

■ Sabotage a Property

■ Send a Bribe

Creating Your Base Actions
Each action that you can take requires some command to be executed. Since each com-
mand will need the same base variables you will create a command class from which each
subsequent command can inherit.

Since each command can have a parent command, you will need a variable to store the
parent. You will also need a way to execute the commands. It would make sense to make
each command execute its own functions instead of having the CCommand() class execute the
command functions. Each command could possibly have sub-commands, so you also
need the ability to store those. Since you will store sub-commands you need to keep track
of which command you are currently on. If anything goes wrong with the command, you
need to roll back anything that you have done. After all, you don’t want partial data float-
ing around during the game.

Now that you know what each command needs to do, you can start to plan how you will
code the class. The way I see it, each command can have four possible states. The com-
mand could error, it could be waiting for input, it could have more sub-commands to
process, or it could be done processing. So let’s define some constants.

// define some standard return values for commands.

// Specific commands can return whatever they like.

// Commands that are executed by CGame must return one of these four values.

define(“CMD_ERROR”, 1); // an error occurred

define(“CMD_CONTINUED”,2); // the command has more steps to execute before it finishes

define(“CMD_FINISHED”, 3); // the command has finished executing

define(“CMD_NEEDS_INPUT”, 4); // the command needs human input before it can continue

In the comments you see a reference to a class called CGame(). The CGame() class will handle
running the game and will be covered later in this chapter.

236 Chapter 11 ■ Kiddy Cartel—Creating Your Own MMO

Next let’s create the CCommand() class. You know that you have to track the parent object, the
current command, the sub-commands of the parent object, and whether the command
needs to be rolled back.

class CCommand
{

// this is a reference to a parent object
var $m_pParent = null;

// the index of the current sub-command that is being executed

var $m_nCurrentCommand;

// if true, the command needs to be rolled back. if false,
// the command does not

var $m_bNeedRollBack;

// an array to hold the sub-commands

var $m_arraySubCommands;

function CCommand(&$parent)
{

// set the reference to our parent

$this->m_pParent = &$parent;

// set the current command to the first one

$this->m_nCurrentCommand = 0;

// initially, commands don’t need to be rolled back

$this->m_bNeedRollBack = false;

}

function Execute($args)
{

// each command must deal with handling its own execution

return CMD_FINISHED;

}

/*

This function handles the return value from a sub-command.

It is responsible for incrementing the current command index

and for determining whether this command has anything

left to execute.

Creating Your Base Actions 237

*/

function HandleSubCommand($result)

{

// did it finish?

if ($result == CMD_FINISHED)

{

// yes, so go to the next one
$this->m_nCurrentCommand++;

}

// was there an error?

else if ($result == CMD_ERROR)

{

// yes, so propagate the error upwards
return CMD_ERROR;

}

// does the command need input?

else if ($result == CMD_NEEDS_INPUT)

{

// yes, so just propagate the need for input upwards
return CMD_NEEDS_INPUT;

}

// have we already executed everything
// we need to for this command?

if ($this->m_nCurrentCommand >=
count($this->m_arraySubCommands))

{
return CMD_FINISHED;

}

// we still have more to do!

else

{

return CMD_CONTINUED;

}

}

function OnError($sError)
{

// if we have a parent, let him deal with it

if ($this->m_pParent != null)

238 Chapter 11 ■ Kiddy Cartel—Creating Your Own MMO

{
$this->m_pParent->OnError($sError);

}
// otherwise, we *are* the parent, so we have to deal with it
else
{

// print out the error message

echo “An error occured: $sError
”;

/*

We roll us back, which, assuming all our child classes

implemented OnRollBack correctly, will undo everything.

*/

$this->OnRollBack();

}
}

// the default implementation of the OnRollBack command
//assumes that the command

// performs no processing that affects the roll back.
//if this does not hold, a

// command must override this method in order to
// take the processing into account

function OnRollBack()
{

// since this command doesn’t perform any processing

//outside of subcommand,

// we can simply call rollback on each of its

// sub-commands in reverse order

for($i = $this->m_nCurrentCommand; $i >= 0; $i—)

{

// unroll the sub-command if it’s set.

// the isset check is

// to make sure that we don’t try to

// roll back commands that
// don’t have sub-commands but don’t override OnRollBack.
if (isset($this->m_arraySubCommands[$i]))
{

$this->m_arraySubCommands[$i]->OnRollBack();

}

}

Creating Your Base Actions 239

// reset the current command pointer

$this->m_nCurrentCommand = 0;

}

}

When a command object is created, it calls the CCommand() constructor. This constructor
initializes all the member variables of the class. In this case the parent object gets set, the
number of sub-commands is set to 0, and the rollback required variable is set to false.

Earlier I mentioned that each parent command would handle its own execution. So
the only thing that the Execute() function needs to do is to tell the game that it is finished
executing.

Now you need a way to handle the sub-commands that need processing. What better
name for a function than HandleSubCommand()? The HandleSubCommand() class takes a single
argument that tells the handler what state the command is executing in. First you see if
the command has finished. If the command finished successfully then you can move on
to the next sub-command in the tree. If the command did not finish then it must be in
another state. So you check to see if an error in execution has occurred. If an error has
occurred, then you need to tell the game to stop its execution. If an error has not occurred,
then you need to check to see if the command is awaiting input. If the command is wait-
ing for input, then you need to tell the game to hold up and wait for the user.

If you get past all of that checking you must then check to see if there are more commands
to execute. If there are more commands to execute, then you need to tell the game that it
needs to continue to the next command. If you have executed all of the possible sub-com-
mands then you are finished executing.

What happens if an error occurs during execution? If an error does occur during the exe-
cution of a command, you need to call the OnError() function. There are two states where
an error can occur: 1) if the command has a parent, and 2) if the command doesn’t have
a parent. If the executing command has a parent command, then the parent command
should handle the error. But if the executing command has no parent, then the CCommand()
class needs to clean itself up by calling the OnRollBack() function. All the OnRollBack() func-
tion does is clear any sub-commands that there might be and then resets the count.

You might be thinking that looks like an awful lot of code for a class that really doesn’t do
anything. To tell you the truth, this class will allow you to keep consistency between all of
your commands. Each time you create a command, that command will inherit all the
functions in this class.

240 Chapter 11 ■ Kiddy Cartel—Creating Your Own MMO

Creating a Command with Sub-Commands
So how do you create a new command? Creating a new command is as simple as creating
a new class that inherits from the CCommand() class and executing the logic of the Execute()
and OnRollBack() member functions. Some commands, such as the create login command,
will not implement the OnRollBack() function because it uses sub-commands. This means
that the CCommand() class will handle rolling back all of the sub-commands. Take a look at
the CCreateAccountCmd() class.

<?

require_once(“CCommand.php”);

require_once(“CRenderCmd.php”);

require_once(“CLockTableCmd.php”);

require_once(“CUnlockTableCmd.php”);

require_once(“CVerifyAccountInfoCmd.php”);

require_once(“CCreateNeighborhoodCmd.php”);

class CCreateAccountCmd extends CCommand

{

function CCreateAccountCmd(&$pParent)
{

parent::CCommand($pParent);

$this->m_arraySubCommands[0] = new CRenderCmd($this);
$this->m_arraySubCommands[1] = new CLockTableCmd($this);
$this->m_arraySubCommands[2] = new CVerifyAccountInfoCmd($this);
$this->m_arraySubCommands[3] = new CCreateNeighborhoodCmd($this);
$this->m_arraySubCommands[4] = new CUnlockTableCmd($this);
$this->m_arraySubCommands[5] = new CRenderCmd($this);

}

function Execute($args)

{

$result = null;

// is it ok for us to continue on to actually creating the account?

if ($this->m_nCurrentCommand == 0 && isset($args[‘proceed’]))

{

// we got our input, so let’s move to the next command
$this->m_nCurrentCommand++;

// we want the next “proceed” we see to be a new one.

Creating a Command with Sub-Commands 241

// so get rid of the one we have now
unset($args[‘proceed’]);

}

do
{

// jump to the current command and execute it
switch ($this->m_nCurrentCommand)
{

case 0:
// render the account creation page
$result = $this->m_arraySubCommands[0]

->Execute(“CreateAccount.html”, $args);
// if it was successful, then we know

// that we need to wait for input
if ($result == CMD_FINISHED)
{

$result = CMD_NEEDS_INPUT;
}
break;

case 1:
// lock the database table
$result = $this->m_arraySubCommands[1]

->Execute($GLOBALS[‘g_DBTable’]);
break;

case 2:
// verify the account information
$result = $this->m_arraySubCommands[2]

->Execute($args[‘sPlayerName’],
$args[‘sPassword’],
$args[‘sPasswordRetype’],
$args[‘sNeighborhoodName’]);

// was there an error?
if ($result == CMD_ERROR)
{

// let the regular error
//handler deal with these errors
break;

}

// any other error?

else if ($result != CMD_FINISHED)

{

242 Chapter 11 ■ Kiddy Cartel—Creating Your Own MMO

// undo whatever we’ve done so far
$this->OnRollBack();

// make a note of the error,
// so the create

// account page can render
// it to the user

$args[‘sError’] = $result;

// restart this command’s execution
$this->m_nCurrentCommand = 0;
return $this->Execute($args);

}

break;
case 3:

// create the neighborhood
$result = $this->m_arraySubCommands[3]

->Execute($args[‘sPlayerName’],
$args[‘sPassword’],
$args[‘sNeighborhoodName’]);

break;
case 4:

// unlock all locked database tables
$result = $this->m_arraySubCommands[4]

->Execute();

break;

case 5:
// render a “successful creation” page
$result = $this->m_arraySubCommands[5]

->Execute(“AccountCreationSuccess.html”, $args);
break;

}

// handle the result from our sub-command

$result = $this->HandleSubCommand($result);

// while there are still commands to be
// executed that don’t need human input
} while($result == CMD_CONTINUED) ;

Creating a Command with Sub-Commands 243

return $result;
}

}

?>

You’ll notice that the first six lines of the code all require other files. These other files are
simply other classes that the game uses. Since this is a command, you need to require the
CCommand.php file so you can inherit from it. The CRenderCmd() allows you to pass the
execute function an html file to render to the browser. This command handles everything
that the user sees. The CLockTableCmd() and the CUnlockTableCmd() locks and unlocks a spec-
ified table in the Kiddy Cartel database. Without these two classes there would be a chance
that a user could be updating the database at the same time that another user is updating
the database, and that is not good. The CVerifyAccountInfoCmd() looks in the database to
make sure that the user isn’t trying to create a duplicate account. If they are, then execu-
tion needs to stop and the user needs to know that the account already exists. The last
required file is the file that actually creates the default neighborhood for the user.

I am not going to explain each one of these classes. There are just too many classes in
this game to explain each in great detail. Please look at the CD and take a look at
each class. You’ll notice that each command is structured very similarly. I will explain the
CCreateAccountCmd() class and another class that doesn’t have sub-commands to execute so
you can see the difference in how to code them.

All the CCreateAccountCmd() class implements is a constructor and the Execute() function.
The constructor tells the CCommand() class that the CCreateAccountCmd() is the parent class.
Then the class proceeds to set up an array of sub-commands. Each of these sub-com-
mands will have its own logic in the Execute() function.

The Execute() function uses a do…while loop and a switch statement to determine which
command it should execute. Each case in the switch statement corresponds to a sub-com-
mand. The sub-command looks like this:

$this->m_arraySubCommands[0] = new CRenderCmd($this);
$this->m_arraySubCommands[1] = new CLockTableCmd($this);
$this->m_arraySubCommands[2] = new CVerifyAccountInfoCmd($this);
$this->m_arraySubCommands[3] = new CCreateNeighborhoodCmd($this);
$this->m_arraySubCommands[4] = new CUnlockTableCmd($this);
$this->m_arraySubCommands[5] = new CRenderCmd($this);

So that means the first case statement will contain the logic for the CRenderCmd(). The sec-
ond case statement will contain the logic for the CLockTableCmd(), and so on. Once one
command has finished executing, the loop starts over and moves on to the next command
by incrementing the $m_nCurrentCommand variable.

244 Chapter 11 ■ Kiddy Cartel—Creating Your Own MMO

The first case statement uses the CRenderCmd() class. The Execute() function of the
CRenderCmd() class takes an HTML page for an argument. This will render the HTML page
to the browser. Once the page is rendered to the browser, the game state switches to wait-
ing for input. Once the user fills out the form on the CreateAccount.html page and then
clicks Submit, the command executes and locks the table. After the table is locked the loop
executes again, but this time it falls to the third case. This is where you verify that this user
doesn’t exist. If the user does exist, then the class needs to roll back whatever you have
done up to this point.

Once you have verified that the account does not exist in the database you create the
neighborhood and unlock the table. Once the table is unlocked you render a message to
the browser telling the user that the account has been created successfully and that they
can log in and start playing, Take a look at Figures 11.2 and 11.3 to see the Create Account
page and the Success page.

It’s that easy to create a command with sub-commands. Don’t worry about how you inte-
grate the command into the game just yet. That will be covered later in this chapter. For
now, take a look at how to create a command with no sub-commands.

Figure 11.2 The Create Account page.

Creating a Command without Sub-Commands 245

Figure 11.3 Successful account creation.

Creating a Command without Sub-Commands
To create a command without sub-commands is much simpler than creating commands
with sub-commands. Instead of implementing a constructor and the Execute() function,
you implement the Execute() function and the OnRollBack() function.

Since you don’t have to execute the logic for each sub-command, the only logic that needs
to be in the Execute() function is the logic for the task you are trying to complete. I’ll use
the CAddWeaponsCmd() class for an example.

<?

require_once(“DB.php”);

require_once(“CCommand.php”);

require_once(“settings.php”);

class CAddWeaponsCmd extends CCommand

{
// information needed to roll back
var $m_sPlayerName;
var $m_nWaterBalloons;

246 Chapter 11 ■ Kiddy Cartel—Creating Your Own MMO

var $m_nPlasticBats;

var $m_nSlingshots;

function Execute($sPlayerName, $nWaterBalloons,

$nPlasticBats, $nSlingshots)

{

// make sure that the input are integer values

$nWaterBalloons = (int)$nWaterBalloons;

$nPlasticBats = (int)$nPlasticBats;

$nSlingshots = (int)$nSlingshots;

// connect to the db

$db = DB::connect($GLOBALS[‘g_PearDBDSN’]);

if (DB::isError($db))

{

// let everyone know that there has been a problem
$this->OnError(“Failed to connect to the

database using “ . $GLOBALS[‘g_PearDBDSN’]);

// return failure

return CMD_ERROR;

}

$query = “UPDATE “ . $GLOBALS[‘g_DBTable’] . “ SET WaterBalloons
= WaterBalloons + $nWaterBalloons, PlasticBats = PlasticBats +
$nPlasticBats, Slingshots = Slingshots + $nSlingshots WHERE
PlayerName = ‘$sPlayerName’”;

$result = $db->Query($query);

if (DB::isError($result))

{

// let everyone know there is a problem
$this->OnError(“Failed to update “.$GLOBALS[‘g_DBTable’]);

// return failure

return CMD_ERROR;

} else {

// set up member variables
$this->m_sPlayerName = $sPlayerName;
$this->m_nWaterBalloons = $nWaterBalloons;

Creating a Command without Sub-Commands 247

$this->m_nPlasticBats = $nPlasticBats;
$this->m_nSlingshots = $nSlingshots;

return CMD_FINISHED;

}

}

function OnRollBack()

{

// since there is no command to deduct weapons,

// this rollback must be implemented here

// connect to the db

$db = DB::connect($GLOBALS[‘g_PearDBDSN’]);

if (DB::isError($db))

{

// let everyone know that there has been a problem
$this->OnError(“Failed to connect to the database using “

. $GLOBALS[‘g_PearDBDSN’]);

// return failure

return CMD_ERROR;

}

$result = $db->Query(“UPDATE “.$GLOBALS[‘g_DBTable’].” SET “ .
“WaterBalloons = WaterBalloons + $this->m_nWaterBalloons, “ .
“PlasticBats = PlasticBats + $this->m_nPlasticBats, “ .
“Slingshots = Slingshots + $this->m_nSlingshots “ .
“WHERE PlayerName = ‘$this->m_sPlayerName’”);

if (DB::isError($result))

{

// there is nothing we can do if the

// rollback failed, so just let it go

}

return;
}

}

?>

248 Chapter 11 ■ Kiddy Cartel—Creating Your Own MMO

This command is much more straightforward than a class with sub-commands. The
Execute() function takes the arguments that you want to update. In this case, since you are
adding weapons to your player, it needs to take a player name, the number of water bal-
loons to add, the number of plastic bats to add, and the number of slingshots to add.

The Execute() function starts off by making sure that the variables are integers. Then it
tries to connect to the database. If the Execute() function cannot connect to the database
then an error has occurred and you need to let the user know what has happened. If the
Execute() function connected to the database successfully then you can update the record.
The $db variable is using the PEAR API to connect to the database. The PEAR API con-
tains a member function called Query() that will execute the query you specified. If an
error occurs during execution you will need to call the OnRollBack() function. Otherwise
you update the players’ stats and return control back to the game so it can re-render the
page.

The OnRollBack() function attempts to connect to the database. After the OnRollBack()
function has successfully connected to the database it attempts to update the database
back to the original values that the player had before the query failed. If anything in the
OnRollBack() function fails there isn’t too much you can do.

Look at All the Commands… Now What?
Now that you know how to create your own commands, you need a way to access them
through the game structure. You will need to create something called a command factory.
The command factory class contains a single function called CreateCommand(). The com-
mand factory class also has a require_once() reference to every single command class that
you have created. The command factory class will enable you to create a command-based
on the query string. When you click on a link that triggers an action and you need to tell
the game what type of action you will be starting, you do this through the query string.
Take a look at the CommandFactory() class.

<?

/*
You should require_once() all source files containing
commands you want instantiated using the factory. The
CGame object uses the factory to handle creation of the
command objects in order to hide the need for a parent
from the CGame object.
*/

Look at All the Commands. . . Now What? 249

require_once(“CLockTableCmd.php”);
require_once(“CUnlockTableCmd.php”);

require_once(“CRenderCmd.php”);

require_once(“CManageAccountCmd.php”);
require_once(“CCreateAccountCmd.php”);
require_once(“CEditAccountCmd.php”);
require_once(“CMoveOutOfNeighborhoodCmd.php”);

require_once(“CLogoutCmd.php”);
require_once(“CLoginCmd.php”);

require_once(“CGameMenuCmd.php”);

require_once(“CAssetAcquisitionCmd.php”);
require_once(“CBuyWeaponsCmd.php”);
require_once(“CBuyEquipmentCmd.php”);
require_once(“CRecruitCmd.php”);

require_once(“CBuildResourceCmd.php”);
require_once(“CMowLawnCmd.php”);
require_once(“CMakeLemonadeCmd.php”);
require_once(“CBakeCookiesCmd.php”);

require_once(“CShowNeighborhoodStatsCmd.php”);
require_once(“CViewTopNeighborhoodsCmd.php”);

require_once(“COrderMinionsCmd.php”);
require_once(“COrderPaperBoysCmd.php”);
require_once(“COrderBulliesCmd.php”);

require_once(“CRazeCmd.php”);
require_once(“CScareCmd.php”);
require_once(“CTakeOverCmd.php”);

require_once(“CSpyCmd.php”);
require_once(“CSabotageCmd.php”);
require_once(“CBribeCmd.php”);

250 Chapter 11 ■ Kiddy Cartel—Creating Your Own MMO

class CCommandFactory
{

// This exists in order to allow the parent
// reference in the commands to be set to null.
var $m_NullVariable = null;

function CreateCommand($sCmdName = “”)
{

// if it’s a known class, create it

if (class_exists($sCmdName))

{

return new $sCmdName($m_NullVariable);

}

// are we trying to create a class that doesn’t exist?

else if ($sCmdName != “” && !class_exists($sCmdName))

{

// this should never happen, so warn the programmer
// (they probably forgot to require_once the command)
echo “UNKNOWN COMMAND!
”;

// hard exit, since there is nothing else we can really do
exit(1);

}

// it’s undefined, so go with the default

else

{

// render the main game command by default
return new CGameMenuCmd($this->m_NullVariable);

}
}

}

?>

If you create your own commands and forget to add the require_once() reference to the file
then the game will let you know that it is trying to execute an unknown command. So
remember to add your command to the command factory.

As you can see, all that the command factory does is check to see if the command that you
are trying to create exists. If the command does exist then it creates it; if the command
does not exist then it lets you know. If there is no command to execute then it assumes
that you are on the game menu and that it should render the menu to the browser.

Look at All the Commands. . . Now What? 251

So how in the world do you put all of this together? Well, that is where the CGame() class
comes into play. Everything that happens in the game occurs through the main.php page.
The main.php page calls the CGame() class. Take a look at the main.php page.

<?

require_once(“CGame.php”);
require_once(“CNeighborhood.php”);
require_once(“CCommand.php”);
require_once(“CRenderCmd.php”);

function main()
{

// seed the random number generator once for all commands
srand(time());

// get the session up and running

session_start();

// if there isn’t a game objection in the session, make one

if (!isset($_SESSION[‘game’]))

{

$_SESSION[‘game’] = new CGame;

}

// execute the current game command

$_SESSION[‘game’]->ExecuteCommand($_REQUEST);

}

main();

?>

The first event that occurs when you hit this page is that it checks to see if you currently
have a session. If you do have a session, then it executes any requests that have come
through the page by using the global $_REQUEST variable. However, if you do not have a ses-
sion it starts a new game by calling the CGame() class. Figure 11.4 shows the login screen of
the game, which is rendered when a session is started.

252 Chapter 11 ■ Kiddy Cartel—Creating Your Own MMO

Figure 11.4 The login screen displays when a new game is started.

Once the main.php file constructs the CGame() class, the CGame() class constructs a new
command factory.

function CGame()
{

// create the factory that we will be using to get our comands
$this->m_CmdFactory = new CCommandFactory;

}

Once the command factory is loaded, the main.php file calls the ExecuteCommand() function
for the CGame() class. This function checks the query string to see if there are any com-
mands posted to it. If there are no commands posted to the $_REQUEST object then the com-
mand type is set to a blank string. This blank string tells the game to render the game
menu. Remember that the $_REQUEST object sends the type of command to the command
factory and if there aren’t any commands, it assumes that you are on the menu.

After the CGame() class checks to see if the $_REQUEST object is populated it credits the player
with the turns he deserves. Next it checks to see if a command is currently executing. If a
command is not executing then it attempts to create a new command.

If a command is executing then the CGame() class checks to see if the executing command
is the same as the command that was requested. If it is not the same then something weird

Look at All the Commands. . . Now What? 253

has happened and the executing command needs to be rolled back and the new requested
command needs to be created.

Once the command is created, it runs the command. After the command is run, it
checks the results that you defined earlier in the Command() class. If the result is equal to
CMD_FINISHED it means that the command has completed successfully. Otherwise it checks
to see if an error has occurred. If an error has occurred the command has already rolled
back what it has attempted to do, so you just need to let the user know what happened.
The following code listing shows the CGame() class in all its fantastic glory:

<?

require_once(“CCommandFactory.php”);
require_once(“CNeighborhood.php”);
require_once(“CCreditTurns.php”);

class CGame
{

// the player’s neighborhood

var $m_Neighborhood;

// the currently executing command

var $m_CurrentCmd;

// the command factory from which to get all of our commands

var $m_CmdFactory;

function CGame()

{

// create the factory that we will be using to

// get our comands from

$this->m_CmdFactory = new CCommandFactory;

}

// executes the next step in the game

function ExecuteCommand($args)

{

// if a type is not set, change it to a blank

if (!isset($args[‘type’]))

{

$args[‘type’] = “”;

254 Chapter 11 ■ Kiddy Cartel—Creating Your Own MMO

}

// if the player is logged in, credit him the
// turns that he deserves

if (isset($_SESSION[‘neighborhood’]))
{

$turn_update = new CCreditTurns($null);
$turn_update->Execute();

}

// is there no currently executing command?

if ($this->m_CurrentCmd == NULL)

{

// create the new command

$this->m_CurrentCmd = $this->m_CmdFactory->

CreateCommand($args[‘type’]);
}
// did the command type change on us?
else if (strtolower(get_class($this->m_CurrentCmd)) !=

strtolower($args[‘type’]))
{

// we interrupted a command, so undo whatever we’ve done
$this->m_CurrentCmd->OnRollBack();

// create the new command
$this->m_CurrentCmd = $this->m_CmdFactory->

CreateCommand($args[‘type’]);
}

// if there is something to execute (and there should be!), do it

if ($this->m_CurrentCmd != NULL)

{

// execute the command

$result = $this->m_CurrentCmd->Execute($args);

// is it finished?

if ($result == CMD_FINISHED)

{

$this->m_CurrentCmd = NULL;

}

Look at All the Commands. . . Now What? 255

else if ($result == CMD_ERROR)
{

echo “An error occured while executing “ .
get_class($this->m_CurrentCmd) . “!
”;

}
}

}

}

?>

Once you have everything put together in the command factory and all the settings
tweaked in the settings.php file, you can run the game. When you log in to the game you
will see the menu that looks like Figure 11.5. When you roll over the links you will see a
query string. This query string is letting the game know what command to execute. The
link in the status bar of your browser should look like this:

http://localhost/chapter11/main.php?type=CBuyEquipmentCmd

Figure 11.5 The game in action.

256 Chapter 11 ■ Kiddy Cartel—Creating Your Own MMO

Conclusion
You have successfully created one of the coolest MMO games currently out there. You
should give yourself a huge pat on the back because you have come leaps and bounds from
the beginning of this book. In the next chapter you will explore how to create your own
dynamic Flash pieces with PHP. You will also learn how to add ActionScript and anima-
tion to these dynamic Flash pieces.

I have to quickly thank Dragon Fly Game Design (www.dragonflygamedesign.com/) for
creating this awesome idea for this MMO. Go check them out; they do some awesome
work.

With that said, let’s move on to creating some dynamic Flash pieces!

chapter 12

Building Your
PHP Skills

■ PHP and Ming

■ How to Create a Flash Movie

■ Drawing to Your Flash Movie

■ Filling with Ming

■ Adding Animation to the Flash Piece

■ Adding ActionScript to Your Flash Piece

Congratulations, you have made it to the end of this book, and you have accom-
plished quite a bit. You have learned all about the server environment on which
PHP runs. You have installed your own Web server. You have installed the PHP

interpreter. You learned all about HTML, and then you conquered the basics of PHP. You
have learned about arrays and you’ve created a tic-tac-toe game. You then dominated non-
relational databases and created a basic chess game. After that, you remade a Web-based
version of the classic Scorched Earth, called Battle Tank. You even created your own MMO
game.

You have done all of this with PHP alone. Imagine what else you can do with PHP. In this
final chapter, you’ll take a look at some of the other cool things you can do with PHP.

PHP and Ming
What is Ming? Ming is a library that allows you to create your own dynamic SWF
Flash movies. That’s right; you can create on-the-fly Flash movies. Imagine the endless

257

258 Chapter 12 ■ Building Your PHP Skills

applications you could use this for. Dynamic tickers, an online chat application using a
PHP engine, creating random challenge games; the list goes on and on. Up to this point,
all of your games have been turn-based with minimal user interaction with the page itself.

With PHP combined with Flash you could add some really cool interactions to your game.
Besides adding interaction you can create some real animations. You can even add Flash
elements into your game.

Now you are probably chomping at the bit to install Ming. Before I get to that I just want
to say that this is not a complete “all you can do with Ming” chapter. This is simply a look
at what you can do to build your PHP skills. Now, with that said, you install Ming like any
other extension. Open up the php.ini file and uncomment the following line:

extension=php_ming.dll

If you are the type that would rather load the extension dynamically, you can always use
the following code to do just that:

<?php
if(!extension_loaded(‘ming’))
{

if(strtoupper(substr(PHP_OS, 0, 3)) == ‘WIN’)
{

dl(‘php_ming.dll’);

}

else

{

dl(‘php_ming.so’);
}

}
?>

Now that you have officially enabled Ming you can start creating dynamic Flash pieces.
Ming comes with 13 classes that allow you to perform various tasks in Flash. Take a look
at Table 12.1 for a description of these 13 classes for creating and manipulating your
dynamic Flash pieces.

N o t e

Ming does not create ActionScript for you. However, it does give you an interface to add your own
ActionScript to your dynamic Flash pieces.

How to Create a Flash Movie 259

Ming Objects

Class Description

SWFMovie

SWFShape

SWFFill

SWFGradient

SWFBitmap

SWFFont

SWFText

SWFTextField

SWFDisplayItem

SWFSprite

SWFMorph

SWFButton

SWFAction

Table 12.1

Creates a Flash movie.

Creates geometric shapes for your Flash movie.

Provides methods to fill your objects.

Creates a gradient object so you can use it as a fill for your geometry.

Allows you to include .jpg and .png images in your Flash movie.

Allows you to create a font for your Flash piece.

Allows you to output text to your Flash piece.

Allows you to create a text input area in your Flash piece.

Allows you to access other Flash objects.

Allows you to create a movie clip for your Flash piece.

Allows you to create shape tweens between two objects.

Allows you to create a button in your Flash piece.

Creates an ActionScript object so you can add ActionScript to your Flash piece.

How to Create a Flash Movie
To create a new Flash movie you need to invoke an instance of the SWFMovie class. Take a
look at the following line of code to see how to invoke the SWFMovie class:

$myMovie = new SWFMovie();

The variable $myMovie now contains an instance of the SWFMovie class. Now that you have an
instance of SWFMovie you can specify the fundamentals of your movie, such as movie
dimensions, frame rate, and background color. After you have specified these fundamen-
tals of your movie you could output it to the browser.

To set the dimensions of your movie, the SWFMovie class contains a member function called
setDimension(). The setDimension() function takes two arguments: the width and the height
(in pixels) you want your movie to be. Take a look at the following line of code to see how
to set the dimension of your dynamic Flash movie:

$myMovie->setDimension(400, 300);

This sets the $myMovie Flash piece to a width of 400 pixels and a height of 300 pixels. Now
that you have set the dimensions of your Flash piece you need to specify its frame rate.
Your frame rate specifies the number of frames per second that will be displayed. A Flash

260 Chapter 12 ■ Building Your PHP Skills

movie is just a series of frames, sort of like a cartoon. So to display an animation you
would flip through different frames.

To set the frame rate you use the setRate() function. This function takes one parameter:
an integer that specifies the number of frames per second that will be displayed.

$myMovie->setRate(30);

The above code snippet sets the movie to flip through its frames at 30 frames per second.
Now that you have specified the dimensions of your movie and the rate at which your
movie will play you need to set a background color.

To set the background color of your movie, the SWFMovie class contains a member function
called setBackground(). The setBackground() function takes three arguments, all integers.
The first argument is the red component of the color you wish to use. The second argu-
ment is the green component, and the third and final argument is the blue component of
the color you wish to use. Take a look at the following code snippet. It sets the background
color of your Flash piece to black.

$myMovie->setBackground(0, 0, 0);

Now that you have created a basic Flash piece, and I mean basic, you will want some way
to display it to the screen. It’s a good thing that the SWFMovie class contains a member func-
tion called output() that writes the output to the browser. To use it, you need to specify the
content type just like you did when you were creating your own dynamic graphics. Take a
look at the following lines of code:

header(“Content-type:application/x-shockwave-flash”);

$myMovie->output();

Let’s put all this together and take a look at it to see the results of all this code.

<?php

$myMovie = new SWFMovie();

$myMovie->setDimension(400, 300);

$myMovie->setRate(30);

$myMovie->setBackground(0, 0, 0);

// Now output the movie

header(“Content-type:application/x-shockwave-flash”);

$myMovie->output();

?>

Hmmm . . . notice how the whole Flash piece fills the browser no matter how large it is
even though you specified the dimensions of the Flash movie? It does this because a Flash
piece can scale itself dynamically because it uses vector graphics. So in order to keep the

How to Create a Flash Movie 261

Flash piece in the dimensions you specified, you need to embed it into an <object> tag and
save the Flash movie to disk. Take a look at the following example to see how to do that:

<html>
<body>

<OBJECT classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”
codebase=”http://download.macromedia.com/pub/shockwave/cabs/flash/

swflash.cab#version=6,0,0,0”
WIDTH=”400” HEIGHT=”300” id=”flashTest”>

<PARAM NAME=movie VALUE=”example01.php”>

<EMBED src=”example01.php” WIDTH=”400” HEIGHT=”300”

TYPE=”application/x-shockwave-flash”
PLUGINSPAGE=”http://www.macromedia.com/go/getflashplayer”></EMBED>

</OBJECT>
</body>

</html>

Take a look at Figure 12.1 to see the results of embedding the dynamic Flash piece in an
HTML page.

It isn’t much yet, but now I’ll show you how to draw onto your Flash movie canvas.

Figure 12.1 A basic dynamic Flash movie embedded in an
HTML page.

262 Chapter 12 ■ Building Your PHP Skills

Drawing to Your Flash Movie
To draw to your Flash piece you need to create an instance of the SWFShape class. You
do this the same way you created an instance of the SWFMovie class. Once an instance of
SWFShape is created you have access to several functions to draw lines and curves.

$shape = new SWFShape();

Now that you have an instance of the SWFShape class, you can draw to the movie that you
created earlier. To draw a line, SWFShape gives you two member functions to actually draw
the line and one member function to define the style of the line.

To set the style of the line you can use the setLine() function. The setLine() function takes
five arguments. The first is the width of the line in pixels; the next three arguments are the
RGB values for the color of the line; the fifth and final argument is the alpha value for the
line. Let’s say you wanted to draw a 5-pixel wide, yellow line onto your canvas. You would
set the style like this:

$shape->setLine(5, 255, 255, 0. 255);

The two functions to draw a line to the canvas are drawLine() and drawLineTo(). Each of
these functions take two arguments: an x coordinate and a y coordinate. The drawLine()
function draws a line from the current pen position to a point (x, y) pixels away from the
current position. The drawLineTo() function draws a line from the current pen position to
the (x, y) coordinate specified.

The pen position is where the tip of the pen is currently on the canvas. You can move the
position of the pen by calling the movePenTo() member function. The movePenTo() member
function takes two arguments: an x coordinate and a y coordinate. Take a look at the fol-
lowing code example to see the difference between the two draw line functions:

<?php

$myMovie = new SWFMovie();

$myMovie->setDimension(400, 300);

$myMovie->setRate(30);

$myMovie->setBackground(200, 200, 200);

// Draw a line to the canvas using drawLine()

$line1 = new SWFShape();

$line1->setLine(5, 0, 0, 0, 255);

$line1->movePenTo(40, 20);

$line1->drawLine(100, 100);

$line2 = new SWFShape();

$line2->setLine(5, 0, 0, 0, 255);

Drawing to Your Flash Movie 263

$line2->movePenTo(80, 20);

$line2->drawLineTo(200, 100);

// Now add the shapes to the movie

$myMovie->add($line1);

$myMovie->add($line2);

// Now output the movie

header(“Content-type:application/x-shockwave-flash”);

$myMovie->output();

?>

First you create a movie that is 400 × 300 pixels with a light gray background. After you
have initialized the movie you create two lines, both 5 pixels wide with a color of black.
Then you move the pen to a specific point on the canvas and draw a line. After you have
drawn a line to both of your SWFShape objects you need to add them to the movie. To do
this you use the add() member function of the SWFMovie class. The add() function takes one
argument of a mixed type. The results of the above example look like Figure 12.2.

Now that you know how to draw lines to the stage of your Flash piece, take a look at how
you draw curves to the stage. Ming provides two functions to draw curves just like it pro-
vides you with two functions to draw lines. The first of the two functions is drawCurve().
The drawCurve() function draws a curve relative to the current pen position. The
drawCurve() function takes four arguments. The first two arguments are the x and y coor-
dinates of the control point of the curve. The last two arguments are the x and y coordi-
nates of what is called the anchor point.

Figure 12.2 Drawing lines with SWFShape.

264 Chapter 12 ■ Building Your PHP Skills

When Ming draws a curve, it starts at the current position of the pen, which is called the
source point. It then draws a curve to the anchor point, first passing through the control
point. Take a look at Figure 12.3 to see a visual representation of this.

The second function used to draw a curve is called drawCurveTo(). Just like the drawLineTo()
function, it starts at the current pen position and draws its point to the anchor point,
using the control point to define the severity of the curve. The drawCurve() function also
takes four arguments. The first two arguments are the x and y coordinates of the control
point. The final two arguments are the x and y coordinates of the anchor point.

To actually draw a curve you follow the same logic you would to draw a line. You need to
create a Flash movie, and initialize its dimensions, rate, and background color. Then you
need to create a new SWFShape() object and set the style of the line you are going to use by
using the setLine() function. Take a look at the following function to see how to draw a
curve using the drawCurveTo() function:

<?php

$myMovie = new SWFMovie();

$myMovie->setDimension(400, 300);

$myMovie->setRate(30);

$myMovie->setBackground(200, 200, 200);

// Draw a curve

$curve = new SWFShape();

$curve ->setLine(5, 0, 0, 0, 255);

$curve ->movePenTo(40, 20);

$curve ->drawCurveTo(100, 100, 100, 20);

// Now add the shapes to the movie

$myMovie->add($curve);

// Now output the movie

header(“Content-type:application/x-shockwave-flash”);

$myMovie->output();

?>

Take a look at the results in Figure 12.4

Filling Objects with Ming 265

Figure 12.3 The Ming curve drawing method.

Figure 12.4 Results of the DrawCurveTo()
function.

Filling Objects with Ming
Ming provides you with three ways to fill an object. You can fill an object with a color, you
can fill an object using a gradient, and you can even fill an object by using an image. The
SWFShape() class provides you with two functions to fill in an image. The setLeftFill()
function and the setRightFill() function both take a SWFFill() object as their only argu-
ment. You can retrieve an SWFFill() object by using the addFill() member function that

266 Chapter 12 ■ Building Your PHP Skills

the SWFShape() class provides. The addFill() function takes three arguments. The first argu-
ment is the red component of the color you wish to use to fill. The second argument is the
green component of the color, and the third argument is the blue component of the color.

So which fill function do you use? Well, it all depends on how you are drawing your object.
If you are drawing your object in a clockwise direction, then you need to use the setRight-
Fill() function. If you are drawing your shape in a counter-clockwise direction, then you
need to use the setLeftFill() function.

In the following example you will draw a square with a black 5-pixel border that is filled
with green:

<?php

$myMovie = new SWFMovie();

$myMovie->setDimension(400, 300);

$myMovie->setRate(30);

$myMovie->setBackground(200, 200, 200);

// Create a new shape and add a fill object

$square = new SWFShape();

$square->setLine(5, 0, 0, 0, 255);

$fill = $square->addFill(0, 255, 0);

$square->setRightFill($fill);

// Draw a square

$square->movePenTo(40, 20);

$square->drawLineTo(140, 20);

$square->drawLineTo(140, 120);

$square->drawLineTo(40, 120);

$square->drawLineTo(40, 20);

// Now add the shapes to the movie

$myMovie->add($square);

// Now output the movie

header(“Content-type:application/x-shockwave-flash”);

$myMovie->output();

?>

Since I am drawing the square in a clockwise direction I use the setRightFill() func-
tion. If I were drawing the square in a counter-clockwise direction I would have used
setLeftFill(). Take a look at Figure 12.5 to see the results of the above example.

Filling Objects with Ming 267

Figure 12.5 Filling a shape.

The second way to fill an object in Flash is to use the SWFGradient() class. This class allows
you to fill an area with a gradient fill. Once you create an instance of the SWFGradient()
class you can add a fill entry to it by using the addEntry() function.

The addEntry() function takes five arguments. The first argument is a ratio value that can
be between 0.0 and 1.0. This ratio specifies where in the gradient the color should occur.
Usually when you are adding a gradient fill, you will add two entries to the object. The first
color will be the 0.0 ratio and the second color will be the 1.0 value for the ratio.

Can you guess what the next three arguments are? That’s right, they are the red, green, and
blue components of the color. The fifth argument is an optional argument where you can
specify the alpha channel for the color.

Now take the previous example used to fill a square and change the regular fill to a gradi-
ent fill going from red to white and have the gradient start halfway across the square.

<?php

$myMovie = new SWFMovie();

$myMovie->setDimension(400, 300);

$myMovie->setRate(30);

$myMovie->setBackground(200, 200, 200);

// Create a new shape and set the line style

$square = new SWFShape();

$square->setLine(5, 0, 0, 0, 255);

268 Chapter 12 ■ Building Your PHP Skills

// Create a new gradient fill

$gradient = new SWFGradient();

$gradient->addEntry(0.0, 255, 0, 0);

$gradient->addEntry(0.5, 255, 255, 255);

// Add the fill to the shape

$fill = $square->addFill($gradient, SWFFILL_RADIAL_GRADIENT);

$square->setRightFill($fill);

// Draw a square

$square->movePenTo(40, 20);

$square->drawLineTo(340, 20);

$square->drawLineTo(340, 220);

$square->drawLineTo(40, 220);

$square->drawLineTo(40, 20);

// Now add the shapes to the movie

$myMovie->add($square);

// Now output the movie

header(“Content-type:application/x-shockwave-flash”);

$myMovie->output();

?>

Figure 12.6 shows the results of the above example. Pretty cool, huh? But there is one
thing I need to mention so as not to lose you. There are two ways to fill a gradient
object: the way that you did it with the SWFFILL_RADIAL_GRADIENT flag or you can use the
SWFFILL_LINEAR_GRADIENT flag.

Figure 12.6 Applying a gradient fill to a shape.

Filling Objects with Ming 269

Now that you know how to flood-fill objects and how to gradient-fill objects, you can
learn how to fill objects with bitmaps. This is a fun way to fill objects. You can sort of com-
pare it to texture mapping in 3D game programming, but it’s just not as complex.

To fill an object with bitmaps you need to create an instance of the SWFBitmap() class. The
SWFBitmap() class doesn’t expose any fill functions but it does allow you to create a bitmap.
The addFill() member function of the SWFShape() class is what allows you to fill a shape.

The SWFBitmap() class allows you to create a bitmap from two types of files. The first is a
.dbl (Define Bits Lossless) file which can be created from a .gif or a .png file. Ming pro-
vides a tool called gif2dbl that converts a .gif to a .dbl file. The second graphic type from
which you can create a bitmap is a non-progressive .jpg. You can use the evaluation edi-
tion of Paint Shop Pro included on the CD to create non-progressive .jpg images.

To create a bitmap from another file, you need to read in the data into a buffer using the
file functions that PHP provides. To read in a file you will need to open the file with
the fopen() function and read the file with the fread() function. Take a look at the follow-
ing code snippet for a quick example:

$fp = fopen(“somefile.jpg”, “rb”);
$data = fread($fp, filesize(“somefile.jpg”));

N o t e

For those of you accustomed to opening and reading files in C, PHP uses the same parameters
as C.

After you have read the data into a buffer, you pass the buffer into the SWFBitmap() con-
structor to create a new bitmap image.

$bitmap = SWFBitmap($data);

Then, after you have a bitmap image, you can pass it to the addFill() member function of
the SWFShape() class and specify one of the following flags:

■ SWFFILL_CLIPPED_BITMAP. This flag will display just one instance of the bitmap.

■ SWFFILL_TILED_BITMAP. This flag will tile the bitmap across your image.

Take a look at the following example to see how to tile a bitmap across a SWFShape():

<?php

$myMovie = new SWFMovie();

$myMovie->setDimension(400, 300);

$myMovie->setRate(30);

$myMovie->setBackground(200, 200, 200);

// Create a new shape and set the line style

270 Chapter 12 ■ Building Your PHP Skills

$square = new SWFShape();

$square->setLine(5, 0, 0, 0, 255);

// Open a graphic and read the data into a buffer

$fp = fopen(“tessalation.jpg”, “rb”);

$data = fread($fp, filesize(“tessalation.jpg”));

// Create a new bitmap image

$bitmap = new SWFBitmap($data);

// Add the fill to the shape

$fill = $square->addFill($bitmap, SWFFILL_TILED_BITMAP);

$square->setRightFill($fill);

// Draw a square

$square->movePenTo(40, 20);

$square->drawLineTo(340, 20);

$square->drawLineTo(340, 220);

$square->drawLineTo(40, 220);

$square->drawLineTo(40, 20);

// Now add the shapes to the movie

$myMovie->add($square);

// Now output the movie

header(“Content-type:application/x-shockwave-flash”);

$myMovie->output();

?>

Figure 12.7 shows the results of the above example.

Figure 12.7 Filling a shape with a
tiled bitmap image.

Adding Animation to Your Flash Movie 271

Adding Animation to Your Flash Movie
Adding animation to your Flash movie really isn’t that difficult. Up to this point you have
used the add() member function of the SWFMovie() class assuming that it does not return
anything. But as a matter of fact it does return something. It returns a SWFDisplayItem()
object. You can use this returned object to manipulate the shape that you add to your
Flash movie.

// How you have been using the add() function
$movie->add($shape);
// The way you will be using the add() function
$shapeHandle = $movie->add($shape);

With this new SWFDisplayItem() handle you can move the object using one of two func-
tions. The first is the move() function. It takes two arguments. The first argument is the x
coordinate and the second argument is the y coordinate. The second function is the
moveTo() function, and it also takes an x coordinate and a y coordinate.

Not only can you move a shape with the move() or moveTo() functions, you can also rotate
a shape by using the rotate() function. The rotate() function takes a single argument
specifying the number of degrees you wish to rotate the object.

Let’s take the square example again and draw the square in the upper left-hand corner of
the Flash piece. Then move it to a point and rotate the square by 45 degrees.

<?php

$myMovie = new SWFMovie();

$myMovie->setDimension(400, 300);

$myMovie->setRate(30);

$myMovie->setBackground(200, 200, 200);

// Create a new shape and set the line style

$square = new SWFShape();

$square->setLine(5, 0, 0, 0, 255);

// Draw a square

$square->movePenTo(1, 1);

$square->drawLineTo(61, 1);

$square->drawLineTo(61, 61);

$square->drawLineTo(1, 61);

$square->drawLineTo(1, 1);

// Now add the shapes to the movie

$squareHandle = $myMovie->add($square);

272 Chapter 12 ■ Building Your PHP Skills

// Move the shape a bit

$squareHandle->moveTo(30, 100);

// Rotate the shape 45 degrees

$squareHandle->rotate(45);

// Now output the movie

header(“Content-type:application/x-shockwave-flash”);

$myMovie->output();

?>

The above example, with results shown in Figure 12.8, simply moves the object down and
to the right a bit, and then it rotates the object 45 degrees. This only affects the first frame
of the Flash piece. In order for this to become an animation you need to add multiple
frames to your Flash piece. To do this you can use the nextFrame() member function of the
SWFMovie() class.

Figure 12.8 Moving and rotating a shape.

Now take the example you just did and make it an animation. The goal of this animation
will be to simply move the square some number of pixels and rotate it each frame. I won’t
be able to show you a screen shot of the animation because it wouldn’t make any sense,
but the example is on the CD provided with this book.

<?php

$myMovie = new SWFMovie();

$myMovie->setDimension(400, 300);

$myMovie->setRate(30);

Adding Animation to Your Flash Movie 273

$myMovie->setBackground(200, 200, 200);

// Create a new shape and set the line style

$square = new SWFShape();

$square->setLine(5, 0, 0, 0, 255);

// Draw a square

$square->movePenTo(1, 1);

$square->drawLineTo(61, 1);

$square->drawLineTo(61, 61);

$square->drawLineTo(1, 61);

$square->drawLineTo(1, 1);

// Now add the shapes to the movie

$squareHandle = $myMovie->add($square);

$squareHandle->moveTo(30, 100);

$myMovie->nextFrame();

$squareHandle->rotate(15);

$myMovie->nextFrame();

$squareHandle->moveTo(80, 200);

$myMovie->nextFrame();

$squareHandle->rotate(15);

$myMovie->nextFrame();

$squareHandle->moveTo(130, 280);

$myMovie->nextFrame();

$squareHandle->rotate(15);

$myMovie->nextFrame();

$squareHandle->moveTo(180, 180);

$myMovie->nextFrame();

$squareHandle->rotate(15);

$myMovie->nextFrame();

$squareHandle->moveTo(130, 80);

$myMovie->nextFrame();

$squareHandle->rotate(15);

$myMovie->nextFrame();

// Now output the movie

header(“Content-type:application/x-shockwave-flash”);

$myMovie->output();

?>

274 Chapter 12 ■ Building Your PHP Skills

If you take a look at the example on the CD you’ll notice that the square bounces around
the screen. If you think it is going too fast you should adjust the frame rate on your Flash
piece or add more frames to the rotation. This is a simple example of the animation but
it should give you the idea.

Now take a look at the SWFMorph(), which will allow you to create a shape tween between
two shapes. The SWFMorph() class has two member functions: getShape1() and getShape2().
These two functions don’t take any arguments at all. They allow you to set a start shape
and an end shape to morph between.

$morph = new SWFMorph();
$shape1 = $morph->getShape1();
$shape2 = $morph->getShape2();

Let’s morph the square into a rectangle to see how to use the SWFMorph() class.

<?php
$myMovie = new SWFMovie();

$myMovie->setDimension(400, 300);

$myMovie->setRate(5);

$myMovie->setBackground(200, 200, 200);

// Create a new morph object

$morph = new SWFMorph();

// Create a new shape and set the line style

$square = new SWFShape();

$rectangle = new SWFShape();

$square = $morph->getShape1();

$square->setLine(5, 0, 0, 0, 255);

$rectangle = $morph->getShape2();

$rectangle->setLine(5, 0, 0, 0, 255);

// Draw a square

$square->movePenTo(1, 1);

$square->drawLineTo(61, 1);

$square->drawLineTo(61, 61);

$square->drawLineTo(1, 61);

$square->drawLineTo(1, 1);

Adding ActionScript to Your Flash Piece 275

// Draw a rectangle
$rectangle->movePenTo(1, 1);
$rectangle->drawLineTo(161, 1);
$rectangle->drawLineTo(161, 61);
$rectangle->drawLineTo(1, 61);
$rectangle->drawLineTo(1, 1);

$morphHandle = $myMovie->add($morph);
$morphHandle->moveTo(100, 100);

for($i = 0.0; $i < 1.0; $i += 0.1)
{

$morphHandle->setRatio($i);
$myMovie->nextFrame();

}

// Now output the movie

header(“Content-type:application/x-shockwave-flash”);

$myMovie->output();

?>

First you set the attributes of your movie. (You’ll notice in this example that the frame rate
is only 5 frames per second. The reason for this is so you can see the morph more clearly.)
Then you create a morph object. Once you have created a morph object you need to
create two shape objects and set which one will be the starting shape and which one will
be the ending shape.

After you have set the start and end shapes you can draw them. Then you need to add the
morph object to the movie and get the new object handle. Once you have the object han-
dle you can actually create the tween. In this case the tween occurs over 11 frames. It starts
at 0.0 and adds 0.1 to $i. Each time $i is incremented you update the ratio at which the
tween should occur and then add a frame to the movie. Take a look at the example
included on the CD to see the results of the above example.

Adding ActionScript to Your Flash Piece
ActionScript is an object-oriented programming language used specifically to create inter-
activity and animations in Flash. With ActionScript you can do everything from loading
in dynamic sprites to dynamically moving and resizing movie clips.

276 Chapter 12 ■ Building Your PHP Skills

N o t e

ActionScript’s syntax is a lot like JavaScript. It uses a DOM to access its elements—e.g.,
_root.clientinfo.ip.

ActionScript uses data types to define its variables. It used to be in Flash 4 you did not
need to declare the data type of your variable. But since the release of Flash 5 you need to
specify a data type. There are five basic data types that Flash uses:

■ Boolean

■ String

■ Number

■ Movie Clip

■ Object

These data types are used in many languages and should be nothing new to you by now.

So how do you add ActionScript to your dynamic Flash pieces? You use the SWFAction()
class. The constructor for this class takes a single argument. That argument is an Action-
Script command. For example:

$action = new SWFAction(“stop();”);

The easiest way to see how this all works is to see an example, so take a look at the fol-
lowing example, in which a text box will display the position of a shape on the stage:

<?php

$myMovie = new SWFMovie();

$myMovie->setDimension(400, 300);

$myMovie->setRate(5);

$myMovie->setBackground(200, 200, 200);

// Create a new morph object

$morph = new SWFMorph();

// Create a new shape and set the line style

$square = new SWFShape();

$square->setLine(5, 0, 0, 0, 255);

// Draw the square

$square->movePenTo(1, 1);

$square->drawLineTo(61, 1);

$square->drawLineTo(61, 61);

Adding ActionScript to Your Flash Piece 277

$square->drawLineTo(1, 61);

$square->drawLineTo(1, 1);

// Add the shape to a movie clip so you can access some properties later

$shape = new SWFSprite();

$shape->add($square);

$shape->nextFrame();

// Create a text box to display some text

$textbox = new SWFTextField(SWFTEXTFIELD_DRAWBOX);

$textbox->setBounds(100, 100);

$textbox->setFont(new SWFFont(“_sans”));

$textbox->setColor(255, 0, 0);

// Now give the text box a name so you can reference it

$textbox->setName(“myTextBox”);

// To move the text box you have to add it to a sprite

$container = new SWFSprite();

$container->add($textbox);

// Move to the next frame in the sprite so it will show up

$container->nextFrame();

// Add the square to the movie clip

$shapeHandle = $myMovie->add($shape);

$shapeHandle->moveTo(10, 10);

$shapeHandle->setName(“shape”);

$containerHandle = $myMovie->add($container);

$containerHandle->moveTo(200, 100);

$containerHandle->setName(“container”);

$myMovie->nextFrame();

$myMovie->add(new SWFAction(“_root.container.myTextBox = _root.shape._x +

‘, ‘ + _root.shape._y;”));

// Now output the movie

header(“Content-type:application/x-shockwave-flash”);

$myMovie->output();

?>

278 Chapter 12 ■ Building Your PHP Skills

Let’s break down the above example. First you create your master Flash movie and set its
properties just like you have been doing. Then you create a new shape, in this case a
square, and you draw it. Next you do something a little different. You add the shape to its
own movie sprite or movie clip. This will allow several things but most importantly it will
allow you to access some predefined properties that a movie contains. The next step is very
important; you must move the sprite to the next frame in order for anything to show up
in your master movie.

After you have created the movie clip that contains the shape you want to access, you cre-
ate a new text box. This will allow you to enter text, although in the example you are using
it to display text. After the text box is created, you add it to its own movie clip. Remember
to move the movie clip to the next frame.

C a u t i o n

Make sure you move sprites to the next frame. Otherwise you will never see the results on the Flash
piece that is sent to the browser.

Now you essentially have three movies: the master movie, a movie clip containing your
shape, and a movie clip containing your text box. To have a complete Flash movie you
need to combine these into one piece. So you add the shape movie clip to your master
movie and then you set a name. Setting the name of the movie clip will allow you to access
it with ActionScript. Now you add the second movie clip to the master movie and also set
the name of the movie clip.

Now you have one movie with two movie clips in it. These movie clips and their elements
can now be accessed and manipulated through ActionScript because you set the names of
the clips. To access the clips, you start at the root of the movie, which is called _root. Then
you go down one more level to the movie clip. Once there, you can manipulate the movie
clip, get its properties, or access elements that are nested further into the clip.

Remember that an ActionScript requires an action to trigger it, so you need to add a frame
to the master movie and then add the script. Once the movie moves to the next frame it
will execute the script on the frame. In this case, it will put the coordinates of the movie
clip into the text box.

Take a look at Figure 12.9 to see the results of the above example.

Conclusion 279

Figure 12.9 An example of ActionScript.

Conclusion
This was a quick overview of some of the more advanced uses of PHP. You can go much
more in depth than I have here. I suggest that you use all the resources available to you to
check out the extensive functionality that PHP offers you.

PHP is a great language that has many uses. Take a look at the following list to give you
just a few ideas:

■ Create your own browsers.

■ Create parsing and management backends for your games.

■ Create extensible, fast, reliable applications and systems.

■ Manage and manipulate graphics.

■ Create your dynamic Flash pieces all with code.

■ Create sockets to Flash pieces to create a multiplayer experience.

■ Quickly create chat systems for your games or Web sites.

280 Chapter 12 ■ Building Your PHP Skills

These are just a few of the applications for which you can use PHP. Let your mind wan-
der and I am sure you will come up with some great and fantastic ideas for applying all of
your newfound knowledge.

With the Web your options are endless. Have fun with it. Now go create the next genera-
tion of online games!

Appendixes

Appendix A
HTML Language Reference . 283

Appendix B
PHP Language Reference . 309

Appendix C
Support—Debugging Applications . 329

Appendix D
GD SDK Language Reference .341

PART V

This page intentionally left blank

appendix A

HTML Language
Reference

This chapter is simply your guide to all the HTML functions available to you. Each
element is listed followed by a description of what the element does, and, if there
are any, a list of all the attributes the element can use.

<!-- and <--> Comment
Denotes a comment in HTML.

!DOCTYPE
Declares the type of content and format of the document.

A
Defines a hypertext link. The HREF or NAME attribute must be specified.

A Attributes
Attribute Description

ACCESSKEY Sets the accessibility key for this element
CHARSET Sets the character set used to encode this element
CLASS Sets the style sheet class this element should use
COORDS Sets the coordinates for this element
DATAFLD Sets the field of a given data source to bind to this element
DATASRC Sets the source of the data for binding for this element
DIR Sets the reading direction for this element
HREF Sets the destination of this element
HREFLANG Sets the language code of the resource pointed to by HREF
ID Sets the ID of this element
LANG Sets the language of this element 283

284 Appendix A ■ HTML Language Reference

Attribute Description

LANGUAGE Sets the scripting language this element should use
METHODS Sets the HTTP methods supported by this element
NAME Sets the name of this element
REL Sets the relationship between this element and the destination element
SHAPE Sets the shape of the element
STYLE Sets style-sheet-specific information for this element
TABINDEX Sets the tabbing order for this element
TARGET Sets the destination to where the content should go
TITLE Sets a Tool Tip for this element
TYPE Sets the MIME type of this element
URN Sets a Uniform Resource Name for this element

ADDRESS
Specifies information such as an address, a signature, and ownership.

ADDRESS Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
DIR Sets the reading direction for this element
ID Sets the ID for this element
LANG Sets the language for this element
LANGUAGE Sets the scripting language this element should use
STYLE Sets style-sheet-specific information for this element
TITLE Sets a Tool Tip for this element

APPLET
Places a Java Applet into the page.

APPLET Attributes
Attribute Description

ALIGN Sets the alignment of the element
ALT Sets the alternative text for this element
ARCHIVE Sets a character string that can be used for your own archive functionality
BORDER Sets the amount of border this element should have
CLASS Sets the style sheet class this element should use
CODE Sets the URL pointing to the compiled Java Class
CODEBASE Sets the URL of the component
DATAFLD Sets the field of a given data source to bind to this element
DATASRC Sets the source of the data for binding
HEIGHT Sets the height of the element
HSPACE Sets the horizontal margin for the element

HTML Language Reference 285

Attribute Description

ID Sets the ID for this element
NAME Sets the name for this element
SRC Sets a URL to be loaded by this element
STYLE Sets style-sheet-specific information for this element
TITLE Sets a Tool Tip for this element
VSPACE Sets the vertical margin for this element
WIDTH Sets the width of the element

AREA
Specifies the shape of a hot spot for a client-side image map.

AREA Attributes
Attribute Description

ALT
CLASS
COORDS
DIR
HREF
ID
LANG
LANGUAGE
NAME
NOHREF
SHAPE
STYLE
TABINDEX
TARGET
TITLE

Sets the alternate text for this element
Sets the style sheet class this element should use
Sets the coordinates for this hot spot
Sets the reading order of this element
Sets a destination URL for this element
Sets the ID of the element
Sets the language of this element
Sets the client-side scripting language this element should use
Sets the name of this element
Sets whether a click in the region should cause an action
Sets the shape of this element
Sets style-sheet-specific information for this element
Sets the tab order for this item
Sets the destination of the content
Sets a Tool Tip for this element

B
Renders the specified text in boldface type.

B Attributes
Attribute Description

CLASS
DIR
ID
LANG
LANGUAGE
STYLE
TITLE

Sets the style sheet class this element should use
Sets the reading order of this element
Sets the ID of the element
Sets the language of the element
Sets the client-side scripting language this element should use
Sets style-sheet-specific information for this element
Sets a Tool Tip for this element

286 Appendix A ■ HTML Language Reference

BASE
Specifies the document’s base URL.

BASE Attributes
Attribute Description

HREF Sets the baseline URL on which all the links in the page will be based
TARGET Sets the destination of the content

BASEFONT
Sets the base font that the page will use for rendering text.

BASEFONT Attributes
Attribute Description

CLASS
COLOR
FACE
ID
LANG
LANGUAGE
SIZE

Sets the style sheet class this element should use
Sets the color the font should be rendered in
Sets the font the element should use
Sets the ID of the element
Sets the language of the element
Sets the client-side scripting language this element should use
Specifies the size of the font

BDO
Turns off the bidirectional rendering algorithm for the specified fragment of text.

BDO Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
DIR Sets the reading order of this element
ID Sets the ID of this element
LANG Sets the language of this element
STYLE Sets style-sheet-specific information for this element
TITLE Sets a Tool Tip for this element

BGSOUND
Specifies a background sound to be played while the page is loaded.

BGSOUND Attributes
Attribute Description

BALANCE Sets how the background sound should be distributed between the left and the right speakers
ID Sets the ID of the element

HTML Language Reference 287

Attribute Description

LOOP Sets the number of times the sound should loop when played
SRC Sets the URL of a sound to be played
VOLUME Sets the volume for the sound

BIG
Renders text in a larger font than the current font specified.

BIG Attributes
Attribute Description

CLASS
DIR
ID
LANGUAGE
STYLE
TITLE

Sets the style sheet class this element should use
Sets the reading order of this element
Sets the ID of the element
Sets the client-side scripting language this element should use
Sets style-sheet-specific information for this element
Sets a Tool Tip for this element

BLINK
Causes the specified text to blink on and off in the page.

BLINK Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

BLOCKQUOTE
Tabs a specified set of text in, and denotes a quotation in the text.

BLOCKQUOTE Attributes
Attribute Description

CITE
CLASS
DIR
ID
LANG
LANGUAGE
STYLE
TITLE

Sets reference information about the text
Sets the style sheet class this element should use
Sets the reading order of the element
Sets the ID of the element
Sets the language of the element
Sets the client-side scripting language this element should use
Sets style-sheet-specific information for this element
Sets a Tool Tip for this element

288 Appendix A ■ HTML Language Reference

BODY
Defines the beginning of the body of the HTML document.

BODY Attributes
Attribute Description

ALINK
BACKGROUND
BGCOLOR
BOTTOMMARGIN
CLASS
DIR
ID
LANG
LANGUAGE
LEFTMARGIN
LINK
RIGHTMARGIN
SCROLL
STYLE
TEXT
TOPMARGIN
VLINK

Sets the color of the active state of a link
Sets the background image of the body
Sets the background color of the body of the page
Sets the amount of margin on the bottom of the page
Sets the style sheet class this element should use
Sets the reading order of the element
Sets the ID of the element
Sets the language of the element
Sets the client-side scripting language this element should use
Sets the amount of margin on the left of the page
Sets the color of links in the page
Sets the amount of margin on the right of the page
Sets whether the scroll bars are turned on or off
Sets style-sheet-specific information for this element
Sets the color that body text should be
Sets the amount of margin on the top of the document
Sets the color of visited links

BR
Inserts a line break in the page.

BR Attributes
Attribute Description

CLASS	 Sets the style sheet class this element should use
CLEAR	 Sets the side where the next line of content will appear after the line break, relative to a

floating object
ID	 Sets the ID of the element
STYLE	 Sets style-sheet-specific information for this element

BUTTON
Renders an HTML button with the specified text.

BUTTON Attributes
Attribute Description

ACCESSKEY Sets the accessibility key for this element
CLASS Sets the style sheet class this element should use

HTML Language Reference 289

Attribute Description

DATAFLD Sets the field of a given data source to bind to this element
DATASRC Sets the source of the data for binding
DIR Sets the reading order of this element
DISABLED Sets the status of the element
ID Sets the ID of the element
LANG Sets the language for this element
LANGUAGE Sets the client-side scripting language that this element should use
NAME Sets the name of the element
STYLE Sets style-sheet-specific information for this element
TABINDEX Sets the tab order of this element
TITLE Sets a Tool Tip for this element
TYPE Specifies the type of button this element is
VALUE Sets the default selected value of this element

CAPTION
Specifies a caption to be placed next to a table.

CAPTION Attributes
Attribute Description

ALIGN Sets the position of the element relative to the table
CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

CITE
Renders text in italics.

CITE Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

CODE
Renders text as a code sample using a fixed-width font.

CODE Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

290 Appendix A ■ HTML Language Reference

COL
Specifies column-based defaults for a table.

COL Attributes
Attribute Description

ALIGN Sets the horizontal alignment of the element
CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
SPAN Sets the number of columns in the group
STYLE Sets style-sheet-specific information for this element
VALIGN Sets the vertical alignment of the element
WIDTH Sets the width of the element

COLGROUP
Sets a container for a group of columns.

COLGROUP Attributes
Attribute Description

ALIGN Sets the horizontal alignment of the element
CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
SPAN Sets the number of columns in the group
STYLE Sets style-sheet-specific information for this element
VALIGN Sets the vertical alignment of the element
WIDTH Sets the default width for each column in the group

DD
This specifies the definition of an item in a definition list.

DD Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

HTML Language Reference 291

DFN
Defines an instance of a term.

DFN Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

DIR
Renders text so it appears like a directory listing.

DIR Attributes
Attribute Description

CLASS	 Sets the style sheet class this element should use
COMPACT	 Sets a Boolean value specifying whether the list should be compacted by removing white space

between the items
ID	 Sets the ID of the element
STYLE	 Sets style-sheet-specific information for this element

DIV
Defines a container section or a new layer within a page.

DIV Attributes
Attribute Description

ALIGN
CLASS
DATAFLD
DATAFORMAT
DATASRC
DIR
ID
LANG
LANGUAGE
NOWRAP
STYLE
TABINDEX
TITLE

Sets the horizontal alignment of the element
Sets the style sheet class this element should use
Sets the field of a given data source to bind to this element
Sets how to render the specified data source, as HTML or text
Sets the source of the data for binding for this element
Sets the reading direction for this element
Sets the ID of the element
Sets the language of the element
Sets the client-side scripting language this element should use
Sets the browser to not automatically wrap text
Sets style-sheet-specific information for this element
Sets the tab order for this element
Sets a Tool Tip for this element

292 Appendix A ■ HTML Language Reference

DL
Starts a definition list.

DL Attributes
Attribute Description

CLASS	 Sets the style sheet class this element should use
COMPACT	 Sets a Boolean value specifying whether the list should be compacted by removing white space

between the items
ID	 Sets the ID of the element
STYLE	 Sets style-sheet-specific information for this element

DT
Starts a definition term in a definition list.

DT Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

EM
Renders text as emphasized; basically just bolds the text.

EM Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

EMBED
Embeds a document of any type into the page.

EMBED Attributes
Attribute Description

ALIGN Sets the horizontal alignment of the element
ALT Sets the alternate text for the element
BORDER Sets the amount of border the element will have
CLASS Sets the style sheet class this element should use
HEIGHT Sets the height of the element

HTML Language Reference 293

Attribute Description

ID Sets the ID of the element
NAME Sets the name of the element
PLUGINSPAGE Retrieves a URL of the plug-in to be used to view the embedded document
SRC Sets a URL to be loaded
STYLE Sets style-sheet-specific information for this element
TITLE Sets a Tool Tip for this element
WIDTH Sets the width of the element

FIELDSET
Draws a box around the contained elements.

FIELDSET Attributes
Attribute Description

ALIGN Sets the horizontal alignment of the element
CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

FONT
Allows you to specify a font face, size, and color for a section of text.

FONT Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
COLOR Sets the color of the text for this element
FACE Sets the font for this element
ID Sets the ID for the element
SIZE Sets the size of the font for this element
STYLE Sets style-sheet-specific information for this element

FORM
Creates a form that can contain controls and elements whose values are sent to the server.

FORM Attributes
Attribute Description

ACTION Specifies the URL for processing
CLASS Sets the style sheet class this element should use
ENCTYPE Sets the encoding type of the form
ID Sets the ID for the element

294 Appendix A ■ HTML Language Reference

Attribute Description

METHOD Sets how the form will transfer its data to the server
NAME Sets the name of the element
STYLE Sets style-sheet-specific information for this element

FRAME
Specifies a individual frame within a frameset.

FRAME Attributes
Attribute Description

ALIGN Sets the horizontal alignment of the element
BORDERCOLOR Sets the border color of the element
CLASS Sets the style sheet class this element should use
DATAFLD Sets the field of a given data source to bind to this element
DATASRC Sets the source of the data for binding for this element
FRAMEBORDER Sets whether or not the element will have a border
HEIGHT Sets the height of the element
ID Sets the ID of the element
MARGINHEIGHT Sets the height of the margin
MARGINWIDTH Sets the width of the margin
NAME Sets the name of the element
NORESIZE Sets the frame at a fixed width so the user can not resize the frame
SCROLLING Sets whether the frame will allow scrolling or not
SRC Sets a URL to be loaded by the element
STYLE Sets style-sheet-specific information for this element

FRAMESET
Specifies a frameset that can contain multiple frames and other nested framesets.

FRAMESET Attributes
Attribute Description

BORDER Sets the amount of border for the frameset to have
BORDERCOLOR Sets the border color for this element
CLASS Sets the style sheet class this element should use
COLS Sets the widths of the columns in the frameset
FRAMEBORDER Sets whether or not to display a border
FRAMESPACING Sets the amount of space between frames
ID Sets the ID of the element
ROWS Sets the height of the rows in the frameset
STYLE Sets style-sheet-specific information for this element

HTML Language Reference 295

HEAD
Begins the heading of an HTML document, and contains tags holding information about
the document.

HEAD Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
PROFILE Sets one or more Uniform Resource Identifiers of meta-data profiles
STYLE Sets style-sheet-specific information for this element

HN
The six headers (H1 – H6) that can render text in a range of sizes.

HN Attributes
Attribute Description

ALIGN Sets the horizontal alignment of the element
CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

HR
Places a horizontal rule on the page.

HR Attributes
Attribute Description

ALIGN
CLASS
COLOR
ID
NOSHADE
SIZE
STYLE

Sets the horizontal alignment of the element
Sets the style sheet class this element should use
Sets the color of the element
Sets the ID of the element
Sets the element to render without 3-D shading
Sets the size of the element
Sets style-sheet-specific information for this element

296 Appendix A ■ HTML Language Reference

HTML
Starts the HTML document itself.

I
Renders a range of text in italics.

I Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
STYLE Sets style-sheet-specific information for this element

IFRAME
Creates an in-line floating frame in the page.

IFRAME Attributes
Attribute Description

ALIGN
BORDER
BORDERCOLOR
CLASS
DATAFLD
DATASRC
FRAMEBORDER
HEIGHT
HSPACE
ID
MARGINHEIGHT
MARGINWIDTH
NAME
NORESIZE
SCROLLING
SRC
STYLE
VSPACE
WIDTH

Sets the horizontal alignment of the element
Sets the amount of border for the element
Sets the color of the border for the element
Sets the style sheet class this element should use
Sets the field of a given data source to bind to this element
Sets the source of the data for binding for this element
Sets whether or not the element will have a border
Sets the height of the element
Sets the horizontal margin for the element
Sets the ID for this element
Sets the height of the margin
Sets the width of the margin
Sets the name of the element
Sets the frame at a fixed width so the user can not resize the frame
Sets whether the frame will allow scrolling or not
Sets a URL to be loaded by the element
Sets style-sheet-specific information for this element
Sets the vertical margin for the element
Sets the width of the element

HTML Language Reference 297

IMG
Embeds an image in the page.

IMG Attributes
Attribute Description

ACCESSKEY
ALIGN
ALT
BORDER
ID
HEIGHT
NAME
SRC
USEMAP
WIDTH

Sets or retrieves the accessibility key
Sets the horizontal alignment of the element
Sets the alternate text for the element
Sets the amount of border for the element
Sets the ID of the element
Sets the height of the element
Sets the name of the element
Sets the URL to be loaded by the element
Sets what image map to use
Sets the width of the element

INPUT
Specifies an input control for a form. The input control could be a button, check box,
radio button, text box, or password box.

INPUT Attributes
Attribute Description

ACCEPT
ACCESSKEY
ALIGN
ALT
CHECKED
CLASS
DATAFLD
DATAFORMAT
DATASRC
HSPACE
ID
MAXLENGTH
NAME
READONLY
SIZE
STYLE
TABINDEX
TYPE
VALUE

Sets a set of comma-separated content types that will be accepted by the element
Sets or retrieves the accessibility key
Sets the horizontal alignment of the element
Sets the alternate text for this element
Sets whether the field is checked
Sets the style sheet class this element should use
Sets the field of a given data source to bind to this element
Sets how to render the specified data source, as HTML or text
Sets the source of the data for binding for this element
Sets the horizontal margin of the element
Sets the ID of the element
Sets the maximum number of characters accepted for this element
Sets the name of the element
Specifies that the element is read only
Sets the size of the element
Sets style-sheet-specific information for this element
Sets the tabbing order for this element
Sets the type of input this element will be
Sets the initial value for the element

LI

298 Appendix A ■ HTML Language Reference

KBD
Renders text in a fixed width font, sort of like a typewriter.

KBD Attrbiutes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

LABEL
Defines a label for a control element

LABEL Attributes
Attribute Description

CLASS
DATAFLD
DATAFORMAT
DATASRC
FOR
ID
STYLE

Sets the style sheet class this element should use
Sets the field of a given data source to bind to this element
Sets how to render the specified data source, as HTML or text
Sets the source of the data for binding for this element
Sets the element for which the label is to be assigned
Sets the ID of the element
Sets style-sheet-specific information for this element

Specifies an item in an ordered or unordered list.

LI Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID for the element
STYLE Sets style-sheet-specific information for this element

LINK
Specifies a hyperlink to another document. This is used in the heading of the HTML document.

LINK Attributes
Attribute Description

CLASS Sets the style sheet class that this element should use
HREF Specifies the base URL to go to
ID Sets the ID for the element
STYLE Sets style-sheet-specific information for this element

HTML Language Reference 299

MAP
Defines the collection of hot spots for an image map.

MAP Attributes
Attribute Description

CLASS Sets the style sheet class that this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element
NAME Sets the name of the image map defined by the map element

MARQUEE
Creates a scrolling marquee on the page. This marquee can scroll vertically or horizontally.

MARQUEE Attributes
Attribute Description

ALIGN
BEHAVIOR
BGCOLOR
CLASS
DATAFLD
DATAFORMAT
DATASRC
DIRECTION
HEIGHT
ID
LOOP
SCROLLAMOUNT
SCROLLDELAY
STYLE
WIDTH

Sets the horizontal alignment of this element
Sets the scrolling behavior of the element
Sets the background color of the element
Sets the style sheet class this element should use
Sets the field of a given data source to bind to this element
Sets how to render the specified data source, as HTML or Text
Sets the source of the data for binding for this element
Sets the direction the text should scroll
Sets the height of the element
Sets the ID of the element
Sets the number of times the element should play
Sets the amount of characters the element should scroll by
Sets the amount of delay before scrolling starts
Sets style-sheet-specific information for this element
Sets the width of the element

META
Provides various types of information to search engines and other interpreters. This ele-
ment goes in the heading of the HTML document.

META Attributes
Attribute Description

CONTENT Sets the meta content
HTTP-EQUIV Sets information to be used to bind the content to the HTTP headers
NAME Sets the name of the value specified in the content

300 Appendix A ■ HTML Language Reference

NOFRAMES
Specifies the section of text to display for browsers that do not support framesets.

NOFRAMES Attributes
Attribute Description

CLASS Sets the style sheet class that this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

OBJECT
Inserts an object, such as a Flash piece, into the HTML document.

OBJECT Attributes
Attribute Description

ALIGN
BORDER
CLASS
CLASSID
CODE
CODEBASE
CODETYPE
HEIGHT
NAME
STYLE
WIDTH

Sets the horizontal alignment of the element
Sets the amount of border the element should have
Sets the style sheet class that this element should use
Sets the class identifier for the element
Sets a URL for the location of the compiled class
Sets the URL of the component for this element
Sets the internet media type for this element
Sets the height of this element
Sets the name for this element
Sets style-sheet-specific information for this element
Sets the width of this element

OL
Creates an ordered list wherein each item is numbered with the LI tag.

OL Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
START Sets a starting number for the element
STYLE Sets style-sheet-specific information for this element
TYPE Sets the type of ordered list this should be

HTML Language Reference 301

OPTION
Specifies a list item for a select form element.

OPTION Attributes
Attribute Description

CLASS
ID
LABEL
SELECTED
STYLE
VALUE

Sets the style sheet class this element should use
Sets the ID of the element
Sets the label for the element
Sets the element to be the selected item in the list
Sets style-sheet-specific information for this element
Sets the value for this element

P
Specifies a paragraph of text. Even though the ending tag is optional I recommend always
putting it in for completeness.

P Attributes
Attribute Description

ALIGN Sets the horizontal alignment of the element
CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

PARAM
Specifies a parameter or a property in an OBJECT or an APPLET.

PARAM Attributes
Attribute Description

ID Sets the ID of the element
NAME Sets the name of the element
TYPE Sets the type of the element
VALUE Sets the value of the element
VALUETYPE Sets the type of the value specified

302 Appendix A ■ HTML Language Reference

PRE
Renders text in a fixed-width font.

PRE Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

SAMP
Renders text in a smaller font for use as a code sample listing.

SAMP Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

SCRIPT
Denotes a client-side script block for the page that will be interpreted by the browser’s
scripting engine.

SCRIPT Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
SRC Specifies a URL pointing to a scripting file
TYPE Sets the language for the script block

SELECT
Creates a list box or a drop-down list in a form.

SELECT Attributes
Attribute Description

ALIGN Sets the horizontal alignment of the element
CLASS Sets the style sheet class this element should use
DATAFLD Sets the field of a given data source to bind to this element
DATASRC Sets the source of the data for binding for this element

HTML Language Reference 303

Attribute Description

MULTIPLE Sets whether you can select multiple items in the element
NAME Sets the name of the element
SIZE Sets the number of items to show at one time in the element
STYLE Sets style-sheet-specific information for this element
TABINDEX Sets the tab order of this element

SMALL
Specifies a section of text that will be rendered in a smaller font than the current specified
font.

SMALL Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

SPAN
Used with a style sheet to define non-standard attributes for a section of elements.

SPAN Attributes
Attribute Description

CLASS
DATAFLD
DATAFORMAT
DATASRC
ID
STYLE

Sets the style sheet class this element should use
Sets the field of a given data source to bind to this element
Sets how to render the specified data source, as HTML or Text
Sets the source of the data for binding for this element
Sets the ID of the element
Sets style-sheet-specific information for this element

STRONG
Renders a section of text in a bold-faced font.

STRONG Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

304 Appendix A ■ HTML Language Reference

SUB
Renders text in subscript, using a smaller font than the current font specified.

SUB Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

SUP
Renders text in superscript, using a smaller font than the current font specified.

SUP Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

TABLE
Creates a table in the page that can contain TR, TD, and TH tags.

TABLE Attributes
Attribute Description

ALIGN
BACKGROUND
BGCOLOR
BORDER
BORDERCOLOR
BORDERCOLORDARK
BORDERLIGHTCOLOR
CELLPADDING
CELLSPACING
CLASS
FRAME
HEIGHT
ID
STYLE
WIDTH

Sets the horizontal alignment of the element
Sets a background image for the element
Sets the background color of the element
Sets the amount of border the element should have
Sets the color of the border
Sets the color of the dark part of the border
Sets the color of the light part of the border
Sets the amount of padding between the content and the border of the cell
Sets the amount of spacing between the cells
Sets the style sheet class this element should use
Sets the way the border frame around the table should display
Sets the height of the element
Sets the ID of the element
Sets style-sheet-specific information for this element
Sets the width of the element

HTML Language Reference 305

TD
Creates a cell in a table.

TD Attributes
Attribute Description

ALIGN
BACKGROUND
BGCOLOR
BORDERCOLOR
BORDERCOLORDARK
BORDERLIGHTCOLOR
CLASS
COLSPAN
HEIGHT
ID
NOWRAP
ROWSPAN
STYLE
VALIGN
WIDTH

Sets the horizontal alignment of the element
Sets the background image of the element
Sets the background color of the element
Sets the color of the border
Sets the color of the dark part of the border
Sets the color of the light part of the border
Sets the style sheet class this element should use
Sets the amount of cells this cell should span
Sets the height of the element
Sets the ID of the element
Sets the browser to not automatically wrap text
Sets the amount of rows this cell should span
Sets style-sheet-specific information for this element
Sets the vertical alignment of this element
Sets the width of this element

TEXTAREA
Specifies a multi-line text input control for a form.

TEXTAREA Attributes
Attribute Description

ALIGN
CLASS
COLS
DATAFLD
DATAFORMAT
DATASRC
ID
NAME
READONLY
ROWS
STYLE
TABINDEX
WRAP

Sets the horizontal alignment of the element
Sets the style sheet class this element should use
Sets the number of columns in characters the text area should have
Sets the field of a given data source to bind to this element
Sets how to render the specified data source, as HTML or Text
Sets the source of the data for binding for this element
Sets the ID of the element
Sets the name of the element
Sets the text area to read-only
Sets the number of rows in characters the text area should have
Sets style-sheet-specific information for this element
Sets the tab order of the element
Sets how the text should wrap

306 Appendix A ■ HTML Language Reference

TH
Specifies a header cell in a table; the content is usually centered and bolded.

TH Attributes
Attribute Description

ALIGN
BACKGROUND
BGCOLOR
BORDERCOLOR
BORDERCOLORDARK
BORDERLIGHTCOLOR
CLASS
COLSPAN
HEIGHT
ID
NOWRAP
ROWSPAN
STYLE
VALIGN
WIDTH

Sets the horizontal alignment of the element
Sets the background image of the element
Sets the background color of the element
Sets the color of the border
Sets the color of the dark part of the border
Sets the color of the light part of the border
Sets the style sheet class this element should use
Sets the amount of cells this cell should span
Sets the height of the element
Sets the ID of the element
Sets the browser to not automatically wrap text
Sets the amount of rows this cell should span
Sets style-sheet-specific information for this element
Sets the vertical alignment of this element
Sets the width of this element

TITLE
Specifies the title of the document, which is contained in the heading of the document.

TR
Creates a row in a table.

TR Attributes
Attribute Description

ALIGN
BACKGROUND
BGCOLOR
BORDERCOLOR
BORDERCOLORDARK
BORDERLIGHTCOLOR
CLASS
HEIGHT
ID
STYLE
VALIGN
WIDTH

Sets the horizontal alignment of the element
Sets the background image of the element
Sets the background color of the element
Sets the color of the border
Sets the color of the dark part of the border
Sets the color of the light part of the border
Sets the style sheet class this element should use
Sets the height of the element
Sets the ID of the element
Sets style-sheet-specific information for this element
Sets the vertical alignment of this element
Sets the width of this element

HTML Language Reference 307

U
Underlines the specified text.

U Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element

UL
Creates an un-ordered list. Items in the list are specified with the LI tag.

UL Attributes
Attribute Description

CLASS Sets the style sheet class this element should use
ID Sets the ID of the element
STYLE Sets style-sheet-specific information for this element
TYPE Sets the type of bullet that LI will create

This page intentionally left blank

appendix B

PHP Language
Reference

This appendix is a complete guide to all of the PHP functions available to you. Each
function is broken into sections that the function should fall under. Then each
function is listed with the parameters it receives, what the function returns, and a

short description of what the function does.

Apache Functions
Function Returns Description

apache_lookup_uri(string filename) Class Returns a class with properties about the URI specified.
apache_note(string note_name String Retrieves the value in the request notes table for a specific note
[, string note_value]) name. If the note_value is specified then it will set note_name to

the value of note_value.
getallheaders() Array Returns an array of HTTP request headers from Apache.
virtual(string filename) Integer Performs an Apache sub-request to include the specified file.

Array Functions
Function Returns Description

array(...) Array Creates and returns an array with the supplied values.
array_keys(array) Array Returns an array that contains all the keys of the specified array.
array_merge(arrays) Array Merges the supplied arrays into one singular array.
array_pop(array) Mixed Pops the last element of the array and returns it.
array_push(array, variables) Integer Pushes the supplied variables onto the end of the specified array.
array_shift(array) Mixed Removes the first element from the array and returns it.

309

310 Appendix B ■ PHP Language Reference

Function Returns Description

array_slice(array, offset
[,length])

array_splice(input, offset
[,length] [,replacement])

Array

Array

Returns a sub-array from the specified array starting at index offset.

If the length is specified then it will return an array starting from

index offset with a specified length.

Will remove a sub-array from input and replace it with the array

replacement.

Adds the variables to the beginning of the array.

Returns an array containing all the values of the array.

Traverses the supplied array, applying the logic of a specified

function to the elements in the array.

Sorts an array in descending order, retaining the key values.

Sorts an array in ascending order, retaining the key values.

Merges the specified variables into a single array.

Returns the count of elements in the specified array.

Returns the current element in the specified array.

Returns a four-element sub-array that contains the key and value

of the current element. The key is contained in indices 0 and “key”,

and the value is contained in indices 1 and “value”.

Sets the last element of the array to the current index and returns

the value of that last element.

This will import variables into the symbol table from the specified

array. The extract_type parameters tells extract() what to do if a

collision is detected, and the prefix parameter specifies a prefix for

the elements to be inserted.

Returns true if the value exists anywhere in the array, otherwise

it returns false.

Returns the key of the current element in the array.

Sorts the array by its key values.

Creates an array of the supplied variables.

Moves the current index pointer to the next index in the array.

This will return false if you have reached the last index in the array.

Returns the current element of the array.

Moves the current index pointer to the previous index in the array.

This will return false if you have reached the first index in the array.

Returns an array of the integers between low and high.

Returns the first element of the array and sets the current index

to the first available index in the array.

Sorts the array in descending order.

Sorts the array into a random order

Returns the number of elements in the supplied array.

Sorts the array into ascending order.

Sorts the array using the logic of the specified function.

Sorts the array by the key values using the logic of the specified

function.

Sorts the array using the logic of the specified function.

array_unshift(array, variables) Integer
array_values(array) Array
array_walk(array, function Bool
[,parameter])

arsort(array) void
asort(array) void
compact(varnames) Array
count(array) Integer
current(array) Mixed
each(array) Array

end(array) Mixed

extract(array [,extract_type] int
[,prefix])

in_array(value, array) Boolean

key(array) Mixed
ksort(array) Integer
list(variables) void
next(array) Mixed

pos(array) Mixed
prev(array) Mixed

range(low, high) Array
reset(array) Mixed

rsort(array) void
shuffle(array) void
sizeof(array) Integer
sort(array) void
uasort(array, function) void
uksort(array, function) void

usort(array, function) void

PHP Language Reference 311

Aspell Functions
Function Returns Description

aspell_check(dictionary, word) Boolean Returns true if the spelling of the word is recognized in the
specified dictionary.

aspell_check_raw(dictionary, Boolean Checks the spelling of the word with the dictionary without
word) changing the string at all.
aspell_new(master, personal) Integer Loads a new dictionary and returns a link identifier to the new

dictionary.
aspell_suggest(dictionary, word) Array Returns an array of suggested spellings for the specified word.

BCMath Functions
Function Returns Description

bcadd(string1, string2, [scale]) String Returns the sum of string1 and string2. The optional parameter
scale specifies the number of decimal places to go out.

bccomp(string1, string2, Integer Compares string1 and string2. If they are equal it will return 0,
[scale]) if string1 is greater than string2 it will return 1, and if string2 is

greater than string1 then it will return -1. The optional parameter
scale specifies the number of decimal places to go out.

bcdiv(string1, string2, [scale]) String Divides string1 by string2. The optional parameter scale specifies
the number of decimal places to go out.

bcmod(string1, string2) String Returns the modulus of string1 and string2.
bcmul(string1, string2, [scale]) Multiplies The optional parameter scale specifies the number of decimal

string1 by places to go out.
string2.

bcpow(strin1, string2, [scale]) String Takes string1 to the power of string2. The optional parameter
scale specifies the number of decimal places to go out.

bcscale(scale) String Sets the default scale parameter value.
bcsqrt(string1, [scale]) String Returns the square root of string1. The optional parameter scale

specifies the number of decimal places to go out.
bcsub(string1, string2, [scale]) String Subtracts string2 from string1. The optional parameter scale

specifies the number of decimal places to go out.

Calendar Functions
Function Returns Description

easter_date([year])

easter_days([year])

FrenchToJD(month, day, year)

GergorianToJD(month, day, year)

JDDayOfWeek(julianday, mode)

JDMonthName(julianday, mode)

JDToFrench(julianday)

Integer

Integer

Integer
Integer
Mixed

String

String

Returns the timestamp for midnight on Easter Day of the specified

year. If year is not specified then the current year is assumed.

Returns the number of days after March 21st on which Easter

Day falls. If year is not specified then the current year is assumed.

Converts a date in the French Republican calendar to a Julian Day.

Converts the supplied Gregorian Date to a Julian Day.

Returns the day of the week of the specified Julian Day in the

specified mode.

Returns the month name of the specified Julian Day in the specified

mode.

Converts a Julian Day into the French Republic calendar.

312 Appendix B ■ PHP Language Reference

Function Returns Description

JDToGregorian(julianday) String
JDToJewish(julianday) String
JDToJulian(julianday) String
JewishToJD(jewish) String
JulianToJD(month, day, year) String

Converts a Julian Day into a Gregorian date.

Converts a Julian Day into the Jewish calendar.

Converts a Julian Day count to a string representing a Julian Date.

Converts a Jewish date to a Julian Date.

Converts a string representing a Julian Date to a Julian Day.

Date and Time Functions
Function Returns Description

checkdate(month, day, year) Boolean Verifies that the specified month, day, and year is a valid date.
If it is a valid date then true is returned, otherwise false is returned.

date(format, [timestamp]) String Formats a date. If timestamp is not supplied then the current
timestamp is used.

getdate(timestamp) Array Returns an array with date/time settings for the timestamp.
gettimeofday() Array Returns an array with settings for the current time.
gmdate(format, [timestamp], String Returns the timestamp for the GMT time/date that corresponds to
[minute], [second], [month], the local time. Any of the optional parameters that are not used
[day], [year], [is_dst]) are assumed to be the current time.
gmstrftime(format, [timestamp]) String Formats a GMT/CUT time/date according to the specified format.
microtime() String Returns a string containing the microseconds and seconds since

the epoch.
mktime([hour], [minute], [second], Integer Returns the timestamp for the specified date. Any of the optional
[month], [day], [year], [is_dst]) parameters not specified are assumed to be the current time.
strftime(format, [timestamp]) String Formats the local date/time according to the specified format.
time() Integer Returns a current timestamp.

DBA Functions
Function Returns Description

dba_close(dbHandle) void Closes the database that is specified.
dba_delete(key, dbHandle) Boolean Deletes the entry with the specified key in the specified databse.

If it succeeds then it returns true, otherwise it returns false.
dba_exists(key, dbHandle) Boolean Returns true if the specified key in the specified database exists,

otherwise it returns false.
dba_fetch(key, dbHandle) String Returns a serialized string with the specified key in the database.
dba_firstkey(dbHandle) String Returns the first key in the specified database.
dba_insert(key, value, dbHandle) Boolean Inserts a key/value pair into the specified database. Returns true

on success, false on failure.
dba_nextkey(dbHandle) String Returns the next key from the database.
dba_open(path, mode, dbType) Integer Returns a handle to the database with the specified path.

Possible modes are “r”, “w”, “c”, and “n”.
dba_optimize(dbHandle) Boolean Optimizes the specified database. If the optimization succeeded

then the function will return true, otherwise it will return false.
dba_popen(path, mode, dbType) Integer Opens the database in persistent mode. Returns a handle to the

database with the specified path. Possible modes are “r”, “w”,
“c”, and “n”.

PHP Language Reference 313

Function Returns Description

dba_replace(key, value, dbHandle) Boolean Replaces or inserts a key/value pair into the specified database.
dba_sync(dbHandle) Boolean Synchronizes the database. Returns true on success, and false

on failure.

Directory Functions
Function Returns Description

chdir(directory) Boolean Sets directory to the current directory.
closedir(dirHandle) void Closes the directory stream.
dir(directory) Directory Returns an object that represents directory.

Object
opendir(directory) Integer Opens the specified directory and returns a handle to it.
readdir(dirHandle) String Returns the next entry in the specified directory handle.
rewinddir(dirHandle) void Resets the stream to the first object in the directory.

Dynamic Extension Loading
Function Returns Description

dl(extension) Integer Loads an extension dynamically. Returns 0 if loading failed and
non-zero if loading succeeded.

Encryption Functions
Function Returns Description

mcrypt_cbc(cipher, key, data, String Encrypts or decrypts the data in CBC mode.
mode, [iv])

mcrypt_cfb(cipher, key, data, String Encrypts or decrypts the data in CFB mode.
mode, iv)

mcrypt_create_iv(size, source) String Creates an initialization vector from the source using random
numbers.

mcrypt_ecb(cipher, key, data, String Encrypts or decrypts the data in ECB mode.
mode)

mcrypt_get_block_size(cipher) Integer Returns the block size of the cipher,
mcrypt_get_cipher_name(cipher) String Returns the name of the specified cipher.
mcrypt_get_key_size(cipher) Integer Returns the size of the key for the cipher.
mcrypt_ofb(cipher, key, data, String Encrypts or decrypts the data in OFB mode.
mode, iv)

Execution Functions
Function Returns Description

escapeshellcmd(command) String Escapes shell metacharacters in the command.
exec(command, [array], String Executes the specified command. The array, if passed in, will receive
[return_var]) any output from the command. If the return_var is specified this

will contain the result code from the command.

314 Appendix B ■ PHP Language Reference

Function Returns Description

passthru(command, [return_var]) void Executes the specified command and displays the raw output.
system(command, [return_var]) String Executes the specified command and displays the output.

Forms Data Format Functions
Function Returns Description

fdf_close(fdfdoc)

fdf_create()

fdf_get_file(fdfdoc)

fdf_get_status(fdfdoc)

fdf_get_value(fdfdoc, fieldname)

fdf_next_field_name(fdfdoc,

fieldname)

fdf_open(filename)

fdf_save(filename)

fdf_set_ap(fdfdoc, fieldname,

face, filename, pagenumber)

fdf_set_file(fdfdoc, filename)

fdf_set_status(fdfdoc, status)

fdf_set_value(fdfdoc, fieldname,

value, is_name)

Bbool
Integer
string
string
string
string

Integer
Bool
Bool

Bool
Bool
Bool

Closes the FDF document

Creates a new FDF document.

Returns the value of the /F key in the FDF document.

Returns the value of /STATUS key in the FDF document.

Returns the value of the specified field in the FDF document.

Returns the name of the field that follows the specified fieldname.

Opens a FDF document.

Saves a FDF document.

Sets the appearance of the named field in the FDF document.

Sets the value of the /F key in the FDF document.

Sets the value of the /STATUS key in the FDF document.

Sets the value of the specified fieldname in the FDF document.

The is_name argument specifies whether or not the value is to

be a PDF name (1) or a string (0).

File System Functions
Function Returns Description

basename(path) String Returns the file name component from a fully qualified path.
chgrp(filename, group) Bool Changes the group of the filename.
chmod(filename, mode) Bool Changes the mode of the filename.
chown(filename, user) Bool Changes the owner of the filename.
clearstatcache() void Clears the state cache.
copy(source, dest) Bool Copies a file from the source to the destination.
dirname(path) String Returns the directory name component from a fully qualified path.
diskfreespace(dir) float Returns the amount of free space in the specified directory.
fclose(fp) Bool Closes a file stream.
feof(fp) Boolean Checks to see if you are at the end of the specified file stream. If

you are at the end of the stream feof() will return true, otherwise
it will return false.

fgetc(fp) String Reads the next character from the file stream.
fgetcsv(fp, length, [delimiter]) Array Returns an array with the next line separated by commas or a

specified delimiter.
fgets(p, length) String Reads a line of up to length-1.
fegetss(fp, length) String Reads a line of up to length-1 while stripping out any HTML tags.
file(filename) Array Reads the entire specified file into an array.
file_exists(filename) Boolean Returns true if the file exists, and false if the file does not exist.

PHP Language Reference 315

Function Returns Description

fileatime(filename) Integer Returns the time the file was last accessed.
filectime(filename) Integer Returns the time the file was last changed.
filegroup(filename) Integer Returns the ID of the owner group.
fileinode(filename) Integer Returns the inode number for the file.
filemtime(filename) Integer Returns the time the file was last modified.
fileowner(filename) Integer Returns the ID of the owner of the file.
fileperms(filename) Integer Returns the permissions of the specified file.
filesize(filename) Integer Returns the size in bytes of the file.
filetype(filename) String Returns the type of file.
flock(fp, operation) Boolean Sets or releases a lock on the specified file stream.
fopen(filename, mode) Integer Opens a file in the specified mode.
fpassthru(fp) Integer Outputs data from the current position in the file to the end

of the file.
fputs(fp, string, [length]) Integer Writes the specified string to the file stream.
fread(fp, length) String Reads length bytes from the specified file stream.
fseek(fp, offset) Integer Moves the file pointer to offset in the specified file stream.
ftell(fp) Integer Returns the current position of the file pointer.
fwrite(fp, string, [length]) Integer Writes string to the specified file stream.
is_dir(filename) Boolean Checks to see if the specified file is a directory.
is_executable(filename) Boolean Checks to see if the specified file is a executable.
is_file(filename) Boolean Checks to see if the specified file is a file.
is_link(filename) Boolean Checks to see if the specified file is a symbolic link.
is_readable(filename) Boolean Checks to see if the specified file is readable.
is_writable(filename) Boolean Checks to see if the specified file is writable.
link(target, link) Boolean Creates a link.
linkinfo(path) Integer Returns information about the specified link.
lstat(filename) Array Returns information about the specified file.
mkdir(pathname, mode) Boolean Creates a directory with the specified mode.
pclose(fp) Integer Closes a file pointer to a pipe that has been opened with the

popen() function.
popen(command, mode) Integer Opens a pipe by using the specified command.
readfile(filename) Integer Reads and outputs the specified file.
readlink(path) String Returns the target of the specified symbolic link.
rename(from, to) Boolean Renames a file from a file name to a file name.
rewind(fp) Boolean Resets the file pointer to the beginning of the specified file stream.
rmdir(path) Boolean Removes the specified directory.
set_file_buffer(fp, buffer) Integer Sets the size of the buffer for the file stream.
stat(filename) Array Returns information about the specified file.
symlink(target, link) Boolean Creates a symbolic link.
tempnam(dir, prefix) String Creates a unique temporary file name in the specified directory.
touch(filename, time) Boolean Sets the modification time of the specified file name.
umask([mask]) Integer Sets PHP’s specific umask and returns the old umask.
unlink(filename) Boolean Deletes the specified file.

316 Appendix B ■ PHP Language Reference

General Math Functions
Function Returns Description

abs(number) Mixed Returns the absolute value of the number.
acos(arg) Float Returns the arc cosine of arg.
asin(arg) Float Returns the arc sin of arg.
atan(arg) Float Returns the arc tan of arg.
atan2(y, x) Float Returns the arc tan of y and x.
base_convert(number, base1, base2) String Converts number from base1 to base2.
Bindec(binary) Integer Converts a binary string to a decimal string.
ceil(number) Float Returns the ceiling of a number.
cos(arg) Float Returns the cosine of arg.
DecBin(number) String Converts a decimal number to a binary number.
DecHex(number) String Converts a decimal number to a hex number.
DecOct(number) String Converts a decimal number to a octal number.
exp(arg) Float Returns e to the power of arg.
floor(number) Float Returns the floor of a number.
getrandmax() Integer Show the greatest random number that can be returned

from rand().
HexDec(number) Integer Converts a hex number into a decimal.
log(arg) Float Returns the natural log of arg.
log10(arg) Float Returns the base 10 log of arg.
max(arg1, arg2, ...) Mixed Returns the greatest value in the list of arguments.
min(arg1, arg2, ...) Mixed Returns the smallest value in the list of arguments.
mt_getrandmax() Integer Returns the largest value the mt_rand() can return.
mt_rand([min], [max]) Integer Returns a Mersenne Twister random value.
mt_srand(seed) void Seeds the Mersenne Twister random number generator,
number_format(number, [dex_place], String Formats the specified number to a certain number of
[dec_point], [thousands]) decimal places.
OctDec(number) Integer Converts a octal number to a decimal number.
pi() Float Returns pi.
pow(x, y) Float Returns x to the power of y.
rand([min], [max]) Integer Returns a random number.
round(number, precision) Float Returns the rounded value of number to the specified precision.
sin(arg) Float Returns the sin of arg.
srand(seed) void Seeds the random number generator.
tan(arg) Float Returns the tangent of arg.

HTTP Functions
Function Returns Description

header(string)

setcookie(name, [value], [expire],
[path], [domain], [secure])

Integer
Boolean

Sends the specified HTTP header.
Creates a cookie on the client’s computer with the specified name
and value.

PHP Language Reference 317

Image Functions
Function Returns Description

GetImageSize(filename, Array Returns the size of the image.
[imageinfo])

ImageArc(img, x, y, width, Integer Draws a partial ellipse in the specified image, centered at
height, start, end, col) x, y with a specific width and height.
ImageChar(img, font, x, y, Integer Draws the specified character at x, y in the image.
character, color)

ImageCharUp(img, font, x, y, Integer Draws the specified character facing upwards in the image.
character, color)

ImageColorAllocate(img, red, Integer Allocates the specified RGB color value for the image.
green, blue)

ImageColorAt(img, x, y) Integer Returns the index of the color at x, y.
ImageColorClosest(img, red, Integer Returns the index to the closest color in the color
green, blue) palette for the image.
ImageColorExact(img, red, Integer Returns the index of the specified color in the color
green, blue) palette of the image.
ImageColorResolve(img, red, Integer Finds the specified color in the palette; if it doesn’t exist then it
green, blue) returns the index to the closest color in the palette.
ImageColorSet(img, index, red, Boolean Sets the specified index to the RGB color value.
green, blue)

ImageColorsForIndex(img, index) Array Returns an array containing the RGB values for the specified index
in the color palette.

ImageColorsTotal(img) Integer Returns the number of colors in the specified images color palette.
ImageColorTransparent(img, [color]) Integer Sets color as the transparent color in the palette.
ImageCopyResized(dest_img, Integer Copies an area from the source image to an array of the
src_img, destX, destY, srcX, destination image. If the heights are different then the destination
srcY, destWidth, destHeight,
srcWidth, srcHeight)

image is resized.

ImageCreate(width, height) Integer Creates a new image.
ImageCreateFromGif(filename) Integer Creates a new image from the specified file.
ImageDashedLine(img, x1, y1,
x2, y2, color)

Integer Draws a dashed line in the image from point x1, y1 to point x2, y2.

ImageDestroy(img) Integer Destroys the specified image.
ImageFill(img, x, y, color) Integer Fills the image starting at point x, y.
ImageFilledPolygon(img, points,
num_points, color)

Integer Draws a filled polygon in the image between the points.

ImageFilledRectangle(img, x1,
y1, x2, y2, color)

Integer Draws a filled rectangle in the specified image.

ImageFillToBorder(img, x, y, Integer Performs a flood fill between the specified border color starting
border,color) at point x, y.
ImageFontHeight(font) Integer Returns the height of the specified font in pixels.
ImageFontWidth(font) Integer Returns the width of the specified font in pixels.
ImageGif(img, [filename]) Integer Sends the image to a file or to the browser.
ImageInterlace(img, [interlace]) Integer Turns interlacing on or off in the image.
ImageLine(img, x1, y1, x2, y2, Integer Draws a line in the image from point x1, y1 to point x2, y2.
color)

318 Appendix B ■ PHP Language Reference

Function Returns Description

ImageLoadFont(filename) Integer Loads a bitmap font from the file.
ImagePolygon(img, points, Integer Draws a polygon in the image, much like polygon fill but it doesn’t
num_points, color) fill the image.
ImagePSBBox(text, font, size, Array Calculates the coordinates for the bounding box of text area using
space, width, angle) a PostScript font.
ImagePSEncodeFont(filename) Integer Loads a specific character-encoding vector for a PostScript font.
ImagePSFreeFont(fontindex) void Releases the PostScript font from memory.
ImagePSLoadFont(filename) Integer Loads a PostScript font into memory.
ImagePSText(img, text, font, Array Draws the text to the image using a PostScript font.
size, foreground, background,
x, y, [space],[tightness],
[angle], [antialias_steps])

ImageRectangle(img, x1, y1, Integer Draws a rectangle to the image. Acts much like
x2, y2, color) ImageRectangleFill() but the rectangle is not filled when

it is drawn.
ImageSetPixel(img, x, y, color) Integer Sets the pixel at point x, y to a color.
ImageString(img, font, x, y, Integer Draws a string starting at x, y to the image.
size, color)

ImageStringUp(img, font, x, y, Integer Draws a string starting at point x, y facing upwards.
size, color)

ImageSX(img) Integer Gets the width of the image.
ImageSY(img) Integer Gets the height of the image.
ImageTTFBBox(size, angle, Array Returns a bounding box for a TrueType font.
font, text)

ImageTTFText(img, text, size, Array Draws the text in the image using the specified TrueType font.
angle, x, y, color)

IMAP Functions
Function Returns Description

imap_8bit(string) String Converts a 8-bit string to a printable string.
imap_alerts() Array Returns an array of all the IMAP alert messages that have occurred.
imap_append(stream, mailbox, Boolean Appends a message to the specified mailbox.
message, flags)

imap_base64(text) String Decodes the specified base-64 encoded text.
imap_binary(string) String Converts a 8-bit string to a base-64 string.
imap_body(stream, message_num, String Returns the text of the specified message number.
flags)

imap_check(stream) Array Gets information about the specified mailbox.
imap_clearflag_full(stream, Boolean Clears a specific flag on the stream.
sequence, flag, options)

imap_close(stream, flags) Boolean Closes a previously opened IMAP stream.
imap_create-mailbox(stream, Boolean Creates a mailbox.
mailbox)

imap_delete(stream, message_num) Boolean Marks a message for deletion.
imap_delete-mailbox(stream, Boolean Deletes a mailbox.
mailbox)

PHP Language Reference 319

Function Returns Description

imap_errors() Array Returns an array of all the IMAP errors that have occurred.
imap_expunge(stream) Boolean Deletes all the marked messages.
imap_fetchbody(stream, String Gets the specified section of the message.
message_num, part_num, flags)
imap_fetchheader(stream, String Gets the header for the specified message number.
message_num, flags)
imap_fetchstructure(stream, Array Returns the structure of the message.
message_num)
imap_getmailboxes(stream, Array Returns an array of the mailboxes.
ref, pat)
imap_getsubscribed(stream, Array Returns an array of all mailboxes in which a user is currently
ref, pat) subscribed.
imap_header(stream, message_num, Object Returns an object that represents the header of the mail.
fromlength, subjectlength,
defaulthost)
imap_headers(stream) Array Returns an array that contains all the headers for every message

in the stream.
imap_last_error() String Gets the last error that occurred in IMAP.
imap_listmailbox(stream, ref, pat) Array Returns an array that contains all the mailbox names.
imap_listsubscribed(stream, Array Returns an array that contains all the subscribed mailboxes in
ref, pat) the stream.
imap_mail_copy(stream, Boolean Copies a set of messages to another mailbox.
messagelist, mailbox, flags)
imap_mail_move(stream, Boolean Moves a set of messages to another mailbox.
messagelist, mailbox)
imap_mailboxmsginfo(stream) Array Gets information about the current mailbox.
imap_msgno(stream, UID) Integer Returns the message number for the UID.
imap_num_msg(stream) Integer Gets the total number of messages in the mailbox.
imap_num_recent(stream) Integer Gets the total number of new messages in the mailbox.
imap_open(mailbox, username, Integer Opens a IMAP stream for a specific mailbox.
password, flags)
imap_ping(stream) Boolean Pings the IMAP stream.
imap_qprint(string) String Converts a printable string to a 8-bit string.
imap_rename-mailbox(stream, Boolean Renames a mailbox from oldname to newname.
oldname, newname)
imap_reopen(stream, mailbox, Boolean Reopens the IMAP stream.
[flags])
imap_rfc822_parse_adrlist(address, Array Parses an address string and returns an array that contains the
default_host) mailbox, host, personal name, and domain source.
imap_rfc822_write_address(mailbox, String Returns a e-mail address.
host, personal)
imap_scanmailbox(stream, string) Array Returns an array of messages that match the search string.
imap_setflag_full(stream, Boolean Sets the specified flag.
sequence, flag, options)
imap_sort(stream, criteria, Array Returns an array of message numbers that meet the search criteria.
reverse, options)
imap_status(stream, mailbox, Object Gets information about the mailbox.
options)

320 Appendix B ■ PHP Language Reference

Function Returns Description

imap_subscribe(stream, mailbox) Boolean Subscribes to the mailbox.
imap_uid(stream, message_num) Integer Returns the UID for the message.
imap_undelete(stream, Boolean Unmarks a message for deletion.
message_number)

imap_unsubscribe(stream, mailbox) Boolean Unsubscribes from the mailbox.

Informix Functions
Function Returns Description

ifx_affected_rows(id)
ifx_blobinfile_mode(mode)
ifx_byteasvarchar(mode)
ifx_close([linked])

Integer
void
void
Integer

ifx_connect([database], [userid], Integer
[password])
ifx_copy_blob(id) Integer
ifx_create_blob(type, mode, param) Integer

Returns the number of rows that were affected by the query.

Sets the default mode for SELECT statements,

Sets the default byte mode for SELECT statements.

Closes the currently opened connection.

Opens a connection to the Informix database.

Copies a BLOB object.

Creates a BLOB.

Creates a char object.

Executes a prepared SQL statement.

Returns the last error that occurred in Informix.

Returns the last error that occurred or the error message for the

specified code.

Fetches a row from the database.

Returns an array of field names and their properties.

Returns an array of field names and their types.

Releases the BLOB object from memory.

Releases the specified char object from memory.

Releases the result set from memory.

Releases the SLOB object from memory.

Returns the specified BLOB object.

Returns the specified char object.

Returns the contents of sqlca.sqlerrd[0-5] after a query has been run.

Outputs the record set as a HTML table.

Sets the default return value to NULL.

Gets the number of fields in the record set.

Gets the number of rows in the record set.

Opens a persistent connection to a database.

Prepares a SQL query to execute.

Runs the specified SQL query against the open database.

Sets the default text mode for SELECT statements.

Updates the content of a BLOB object.

ifx_create_char(param) Integer
ifx_do(id) Integer
ifx_error() String
ifx_errormsg([errorcode]) String

ifx_fetch_row(id, [position])
ifx_fieldproperties(id)
ifx_fieldtypes(id)
ifx_free_blob(id)
ifx_free_char(id)
ifx_free_result(id)
ifx_free_slob(id)
ifx_get_blob(id)
ifx_get_char(id)
ifx_getsqlca(id)
ifx_htmltbl_result(id,
[html_table_options])
ifx_nullformat(mode)
ifx_num_fields(id)
ifx_num_rows(id)
ifx_pconnect([database],
[userid], [password])

Array
Array
Array
Integer
Integer
Integer
Integer
Integer
Integer
Array
Integer

void
Integer
Integer
Integer

ifx_prepare(query, [linked], Integer
[cursor_type], [blobidarray])
ifx_query(query, [linked], Integer
[cursor_type], [blobidarray])
ifx_textasvarchar(mode) void
ifx_update_blob(id, content) Boolean

PHP Language Reference 321

Function Returns Description

ifx_update_char(id, content)

ifxus_close_slob(id)

ifxus_create_slob(mode)

ifxus_open_slob(id, mode)

ifxus_read_slob(id, bytes)

ifxus_seek_slob(id, mode, offset)

ifxus_tell_slob(id)

ifxus_write_slob(id, string)

Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer

Updates the content in the char object.

Releases the specified SLOB object from memory.

Creates a SLOB object.

Opens a SLOB object.

Reads a specified number of bytes from a SLOB object.

Sets the current pointer position in the SLOB object.

Gets the current position of the pointer in the SLOB object.

Writes a string to the SLOB object.

LDAP Functions
Function Returns Description

ldap_add(link_id, dn, entry)

ldap_bind(link_id, [bind_rdn],

[password])

ldap_close(link_id)

ldap_connect([hostname], [port])

ldap_count_entries(link_id, result) Integer

Boolean
Boolean

Boolean
Integer

Adds an entry for the specified dn.

Binds the LDAP directory with a specified RDN and password.

Closes an open link to the LDAP directory.

Connects to an LDAP server.

Returns the number of entries in the search.

Deletes a dn from a directory in LDAP.

Converts a specified dn to a user-friendly name.

Splits a dn into component parts.

Retrieves the first attribute in the entry.

Gets the result id for the specified entry.

Releases the specified result from memory.

Gets the attributes for the specified entry.

Gets the dn for the entry.

Returns an array of entries.

Gets an array of values for the specified attributes.

Performs a LDAP_SCOPE_ONELEVEL search with the specified

filters.

Adds an attribute to the specified link.

Replaces an attribute in the specified link.

Modifies the specified entry.

Gets the next attribute in the result set.

Gets the next entry for the specified result set.

Performs a LDAP_SCOPE_BASE search using the specified filters.

Performs a LDAP_SCOPE_SUBTREE search with the specified filters.

Unbinds the specified LDAP directory.

ldap_delete(lnk_id, dn) Boolean
ldap_dn2ufn(dn) Integer
ldap_explode_dn(dn, [attributes]) Array
ldap_first_attrbitute(link_id, String
result,ber_id)
ldap_first_entry(link_id, result) Integer
ldap_free_result(result) Boolean
ldap_get_attributes(link_id, Array
result)
ldap_get_dn(link_id, result) String
ldap_get_entries(link_id, result) Array
ldap_get_values(link_id, result, Array
attributes)
ldap_list(link_id, base_dn, Integer
filter, [attributes])
ldap_mod_add(link_id, dn, entry) Boolean
ldap_mod_replace(link_id, dn, Boolean
entry)
ldap_modify(link_id, dn, entry) Boolean
ldap_next_attribute(link_id, String
result, ber_id)
ldap_next_entry(link_id, result) Integer
ldap_read(link_id, base_dn, Integer
filter, [attributes])
ldap_search(link_id, base_dn, Integer
filter, [attributes])
ldap_unbind(link_id) Boolean

322 Appendix B ■ PHP Language Reference

Mail Function
Function Returns Description

mail(to, subject, message, Boolean Sends an e-mail from the admin of PHP to the specified e-mail
[headers]) account.

PHP Options
Function Returns Description

error_log(message, message_type,

[dest], [headers])

error_reporting([level])

extension_loaded(extension_name)

get_cfg_var(var)

get_current_user()

get_magic_quotes_gpc()

get_magic_quotes_runtime()

getenv(var)

getlastmod()

getmyinode()

getmypid()

getmyuid()

getrusage([who])

phpinfo()

phpversion()

putenv(value)

Integer Sends an error message.

Integer Sets or returns the current error reporting level.
Boolean Returns true if the specified extension is loaded,

otherwise it returns false.
String Returns the value of the specified PHP configuration.
String Returns the value of the current user.
Long Returns the current settings for magic quotes.
Long Returns the current settings for magic quotes.
String Returns the value of a specific environment variable.
Integer Returns the time when the current page was last modified.
Integer Returns the inode of the current running script.
Integer Returns the process ID that PHP is running on.
Integer Returns the user ID for the current PHP script’s owner.
Array Returns the current resource usage.
Integer Outputs all configuration information about the PHP configuration.
String Returns the current version of PHP that you are running.
void Sets the value of the environment variable.

set_magic_quotes_runtime(setting) Boolean Enables or disables magic quotes.
set_time_limit(seonds) void Sets the timeout for PHP scripts.

Miscellaneous Functions
Function Returns Description

connection_aborted() Integer Indicates that a connection has been aborted by a user.
connection_status() Integer Gets the status of the connection.
connection_timeout() Boolean Indicates that the script has timed out.
die(message) void Outputs the message and kills the execution of the script.
eval(string) Mixed Evaluates the string as PHP code.
exit() void Stops execution of the current script.
function_exists(name) Boolean Checks to see whether or not a function exists.
ignore_user_abort([setting]) Integer Sets or returns whether a client disconnecting will stop execution

of a script.
iptcparse(iptcblock) Array Parses the iptcblock into an array.
leak(bytes) void Leaks the specified amount of memory.
pack(format, [args]) String Packs the argument into a binary string.

PHP Language Reference 323

Function Returns Description

register_shutdown_ void Specifies a function to execute when the current script terminates.
function(function)

serialize(data) String
sleep(seconds) void

uniqid(prefix) String
unserialize(data) Mixed
usleep(microseconds) void

Serializes the data into a string.

Pauses the execution of the script for the specified amount of

seconds.

Generates a unique id based on the current time.

Unserializes the string.

Pauses the script for the specified amount of microseconds.

Network Functions
Function Returns Description

checkdnsrr(host, [type])

closelog()

debugger_off()

debugger_on(server)

fsockopen(hostname, port,
[error_num], [error_str],
[timeout])

gethostbyaddr(ip_address)

gethostbyname(hostname)

gethostbynamel(hostname)

getmxrr(hostname, mxhost,
[weight])

openlog(identity, option,
facility)

pfsockopen(hostname, port,
[error_num], [eror_str],
[timeout])

Integer Searches DNS files for the host and specific type of record.

Integer Closes the open stream to the current log.

Integer Disables the remote debugger.

Integer Enables the remote debugger.

Integer Opens a socket connection to the specified host and port.

String Returns the name of the host.

String Returns the IP address of the host.

Array Returns an array of IP addresses that the specific host contains.

Integer Returns the MX record for the specific host name from DNS.

Integer Opens a stream to the log file.

Integer Opens a persistent socket connection to the specified host and port.

stream_set_blocking (stream, mode) Bool Sets the blocking mode or a specific socket.
syslog(priority, message) Integer Writes a message to the open log file stream.

NIS Functions
Function Returns Description

yp_err_string(errorcode)

yp_errno()

yp_first(domain, map)

yp_get_default_domain()

yp_master(domain, map)

yp_match(domain, map, key)

yp_next(domain, map, key)

yp_order(domain, map)

String Gets the last error that occurred.

Integer Returns the error code for the last error that occurred.

Array Gets the first key/value pair from the map.

Integer Returns the machine’s default NIS domain name.

String Gets the key/value pair for the master NIS domain.

String Gets the value of the specified key.

String Retrieves the next key/value pair from the pointer.

Integer Returns the order number of the map.

324 Appendix B ■ PHP Language Reference

Perl-Compatible Regular Expression Functions
Function Returns Description

preg_grep(pattern, input)

preg_match(pattern, input,
[matches])

preg_match_all(pattern, input,
matches, [order])

preg_quote(string)

preg_replace(pattern,
replacement, string)

Array
Integer

Integer

String
Mixed

Returns an array of the matching patterns from the input.

Performs a regular expression match on the input.

Matches all patterns in the input.

Escapes special expression characters.

Replaces the string with replacement where it matches the

pattern.

Regular Expression Funcitons
Function Returns Description

ereg(pattern, string, [regs])

ereg_replace(pattern,
replacement, string)

eregi(pattern, string, [regs])

eregi_replace(pattern,
replacement, string)

split(pattern, string, [limit])

sql_regcase(string)

Boolean

String

Boolean

String

Array

String

Searches the specified string for strings that match the regular

expression pattern.

Replaces the string with replacement where it matches the

pattern.

Performs a case-insensitive search on the string for the regular

expression pattern.

Replaces any string with replacement where it matches the pattern,

insensitive to case.

Splits the string into an array using the specified regular expression

pattern.

Returns a regular expression from a case-insensitive match of the

specified string.

Semaphore and Shared Memory Functions
Function Returns Description

sem_acquire(sem_id) Boolean Acquires a semaphore.
sem_get(key, [max_acquire], [perm]) Integer Returns a semaphore ID.
sem_release(sem_id) Boolean Releases a specific semaphore from memory.
shm_attach(key, [memsize], [perm]) Integer Creates a shared memory segment.
shm_detach(shm_id) Boolean Disconnects the shared memory segment.
shm_get_var(shm_id, variable_key) Mixed Returns a variable from the shared memory.
shm_put_var(shm_id, key, value) Integer Puts a variable into the shared memory segment.
shm_remove(shm_id) Integer Deletes a shared memory segment.
shm_remove_var(shm_id, key) Integer Removes a variable from the shared memory segment.

Session Functions
Function Returns Description

session_decode(string) Boolean Decodes the session data.
session_destroy() Boolean Ends the current session.
session_encode() String Encodes the session data.

PHP Language Reference 325

Function Returns Description

session_id([sid]) String Sets or gets the current session id.
session_is_registered(var) Boolean Checks if the specified variable is registered in the current session.
session_module_name([module]) String Sets or gets the name of the current session module.
session_name([name]) String Sets or gets the name of the current session.
session_register(var) Boolean Registers the specified variable with the current session.
session_save_path([path]) String Sets or gets the current path where sessions are being saved.
session_start() Boolean Starts a session.
session_unregister(var) Boolean Unregisters a variable with the current session.

SNMP Functions
Function Returns Description

snmp_get_quick_print()
snmp_set_quick_print(Boolean)
snmpget(hostname, community,
object_id, [timeout], [retries])
snmpset(hostname, community,
object_id, type, value,
[timeout], [retries])
snmpwalk(hostname, community,
object_id, [timeout], [retries])
snmpwalkoid(hostname, community,
object_id [timeout], [retries])

Boolean
void
String

Boolean

Array

Array

Returns the value of the quick_print setting.
Sets the value of the quick_print setting.
Gets an SNMP object.

Sets the SNMP object.

Gets an array of all the SNMP objects.

Gets an array of object IDs and their corresponding
values.

String Functions
Function Returns Description

addslashes(string)

bin2hex(string)

chop(string)

chr(ascii)

chunk_split(string, [chunk_len],

[end])

convert_cyr_string(string,

from, to)

crypt(string, [salt])

echo(string)

explode(separator, string)

flush()

get_meta_tags(filename,

[include_path])

htmlentities(string)

htmlspecialchars(string)

implode(delimiter, array)

String
String
String
String
String

String

String
void
Array
void
Array

String
String

String

Adds escape slashes to the string.

Converts the binary string into a hexadecimal string.

Removes trailing whitespace.

Returns the character for the ASCII code.

Splits the string into smaller chunks by inserting the

character end at every specified chunk_len.

Converts the string from one Cyrillic set to another.

DES-encrypts the string using the salt value.

Outputs a string to the screen.

Splits the string into an array.

Flushes the output buffer.

Gets an array of all the META tags from the specified file.

Converts the string into an HTML entity.

Converts any HTML special characters in the string into a HTML

entitity.

Does the exact opposite of the explode function. It joins the

array into a single string using the specified delimiter.

326 Appendix B ■ PHP Language Reference

Function Returns Description

join(delimiter, array)

ltrim(string)

md5(string)

nl2br(string)

ord(string)

parse_str(string)

print(string)

printf(string, [arg])

String
String
String
String
int
void
Integer
void

Joins the array into a single string using the specified delimiter.

Strips the white space from the beginning of the string.

Calculates the MD5 hash of the specified string.

Inserts the
 tag before all the line breaks in the string.

Returns the specified ASCII value of the first letter of the string.

Parses the string into variables like it was a query string.

Prints the specified string.

Outputs a formatted string.

Converts a quoted printable string to a 8-bit string.

Escapes meta characters in the string.

Decodes a URL-encoded string.

Encodes a string to a URL-encoded string.

Sets the locale information for functions in the specified category.

Calculates the similarity between string1 and string2.

Calculates the soundex key for the string.

Returns a formatted string.

Replaces all occurrences of pattern with replacement in string.

Finds the first occurrence of string2 in string1.

Compares string1 against string2.

Returns the number of characters in the beginning of string1that

do not match the beginning of the characters in string2.

Strips all the HTML and PHP tags from the specified string.

Strips all escape character slashes from the string.

Returns the length in characters of the string.

Finds the first occurrence of string2 in string1.

Returns the specified string in reverse order.

Finds the last occurrence of string2 in string1.

Finds the first occurrence of string2 in string1.

Tokenizes string1 into segments separated by string2.

Converts all characters in the string to lowercase.

Converts all characters in the string to uppercase.

Replaces all occurrences of from in string with to.

Returns the characters in string from the specified start point.

Converts the first character of the string to uppercase.

Converts the first character of each word to uppercase.

quoted_printable_decode(string)

QuoteMeta(string)

rawurldecode(string)

rawurlencode(string)

setlocale(category, locale)

similar_text(string1, string2,

[percent])

soundex(string)

sprintf(format, [args])

str_replace(pattern, replacement,

String
String
String
String
String
int

String
String
String

string)

strchr(string1, string2)

strcmp(string1, string2)

strcpsn(string1, string2)

strip_tags(string)

stripslashes(string)

strlen(string)

strpos(stirng1, string2)

strrev(string)

strrpos(string1, string2)

strstr(string1, string2)

strtok(sring1, string2)

strtolower(string)

strtoupper(string)

strtr(string, from, to)

String
int
int

String
String
int
int
String
int
String
String
String
String
String

substring(string, start, [length]) String
ucfirst(string) String
ucwords(string) String

URL Functions
Function Returns Description

base64_decode(string) String
base64_encode(string) String
parse_url(URL) Array

Decodes the specified base64 string.

Returns a base64 encoded string.

Breaks up the specified URL into an array.

PHP Language Reference 327

Function Returns Description

urldecode(string) String Decodes the URL-encoded string.
urlencode(string) String URL encodes a string.

Variable Functions
Function Returns Description

doubleval(var) Integer Converts the variable to a double.
empty(var) Boolean Checks to see if the variable has a non-zero value.
gettype(var) String Gets the data type of the variable.
intval(var, [base]) Integer Gets the value of the variable using the specified base.
is_array(var) Boolean Checks to see if the variable is an array.
is_double(var) Boolean Checks to see if the variable is a double.
is_float(var) Boolean Checks to see if the variable is a float.
is_int(var) Boolean Checks to see if the variable is an int.
is_long(var) Boolean Checks to see if the variable is a long.
is_object(var) Boolean Checks to see if the variable is an object.
is_real(var) Boolean Checks to see if the variable is a real number.
is_string(var) Boolean Checks to see if the variable is a string.
isset(var) Boolean Checks to see if the variable has been set yet.
settype(var, type) Boolean Sets the variable to the specified type.
strval(var) String Returns the string value of the variable.
unset(var) void Unsets a set variable.

WDDX Functions
Function Returns Description

wddx_add_vars(packet_id, vars) Boolean Serializes the variables then adds them to the specified packet_id.
wddx_deserialize(packet) Mixed Deserializes the specified packet.
wddx_packet_end(packet_id) String Ends the specified packet.
wddx_packet_start([comment]) Integer Starts a new packet.
wddx_serialize_value(var, String Serializes a single value into the packet.
[comment])

wddx_serialize_vars(vars) String Serializes an array of variables into the packet.

Compression Functions
Function Returns Description

gzclose(gz) Integer Closes a gz file stream.
gzeof(gz) Integer Checks to see if you are at the end of the gz file stream.
gzfile(filename) Array Reads the entire contents of a gz file into an array.
gzgetc(gz) String Gets a character from the gz file stream.
gzgets(gz, length) String Gets a line from the gz file stream.
gzgetss(gz, length) String Gets a line from the gz file stream stripping HTML.

328 Appendix B ■ PHP Language Reference

Function Returns Description

gzopen(filename, mode)

gzpassthru(gz)

gzputs(gz, string, [length])

gzread(gz, length)

gzrewind(gz)

gzseek(gz, offset)

gztell(gz)

readgzfile(filename)

gzwrite(gz, string, [length])

Integer
Integer
Integer
String
Integer
Integer
Integer
Integer
Integer

Opens the specified gz file.

Outputs the gz file from the current file pointer.

Writes the string to the gz file stream.

Reads the specified amount of bytes from the gz file stream.

Resets the file pointer to the beginning of the gz file stream.

Sets the file pointer to the offset in the gz file stream.

Gets the current position of the file pointer in the gz file stream.

Reads the file and outputs the contents.

Writes the string to the gz file stream.

XML Parser Functions
Function Returns Description

utf8_decode(string) String
utf8_encode(string) String
xml_error_string(code) String
xml_get_current_byte_index(parser) Integer
xml_get_current_column_ Integer
number(parser)

xml_get_current_line_number(parser) Integer
xml_get_error_code(parser) Integer
xml_parse(parser, data, Boolean
[is_final])

xml_parser_create([encoding]) Integer
xml_parser_free(parser) Boolean
xml_parser_get_option(parser, Mixed
option)

xml_parser_set_option(parser, Boolean
option, value)

xml_set_character_data_handler Boolean
(parser, handler)

xml_set_default_handler(parser, Boolean
handler)

xml_set_element_handler(parser, Boolean
start_element_handler,
end_element_handler)

xml_set_external_entity_ref_ Boolean
handler(parser, handler)

xml_set_notation_decl_ Boolean
handler(parser, handler)

xml_set_processing_instruction_ Boolean
handler(parser, handler)

xml_set_unparsed_entity_decl_ Boolean
handler(parser, handler)

Converts the UTF-8 string to an ISO-8859-1 string.

Converts a ISO-8859-1 string to a UTF-8 string.

Returns the error for the specified code.

Returns the current byte index.

Returns the current column number the parser is on.

Returns the current line number the parser is on.

Returns the last error code that occurred.

Parses the data.

Creates a XML parser.

Destroys the XML parser.

Gets the value of the specified option.

Sets the value of the specified option

Registers a character data handler.

Sets the default handler.

Sets the element handler.

Sets the external reference handler.

Sets the notation declaration handler.

Sets the processing instruction handler.

Sets the unparsed entity declaration handler.

appendix C

Support — Debugging
Applications

In this appendix you will learn how to debug your PHP applications to figure out
errors, which is very important. I only call this section support because you may have
trouble getting some examples to work if your PHP version is different or if you use

a special configuration. This appendix will give you the skills necessary to fix errors as they
arise. With practice, debugging will become second nature to you.

You can break errors into three broad categories.

■ Syntax/compilation errors

■ Semantic/runtime errors

■ Logic errors

Syntax Errors
Syntax errors are raised by the parser when there is malformed code. These are the easiest
errors to track down because the parser tells you which line the error occurred on. Take
the following line of code, for example:

$x = $point[“x”;

This will produce a parser error that looks like Figure C.1.

329

330 Appendix C ■ Support—Debugging Applications

Figure C.1 A parser error.

The error tells you that the parser found an unexpected character, and it tells you the char-
acter that the parser was expecting. It even tells you what line the error occurred on. The
fix for this error is fairly straightforward:

$x = $point[“x”];

This is straightforward, but what if you did something like this:

<?php

for($i = 0;$i < $count; $i++)

?>

Menu Item

<?php

echo($i);

}

?>

This produces the error shown in Figure C.2.

Figure C.2 Another parser error.

Support—Debugging Applications 331

The error is pointing to the bracket at the end of the code. But this brace should be there,
right? So there must be an error somewhere before line 7. Sure enough, the beginning
brace was missed after the start of the for loop. One way to fix this error is to add the
brace. Another perfectly legitimate way to fix this error is to remove the ending brace alto-
gether. Remember, a for loop doesn’t have to have braces if there is only one line of code
to execute.

Semantic Errors
Semantic errors are a bit harder to track down than syntax errors. The errors can be some-
what vague even though they give line numbers. Take a look at the following example:

<?php

socket_create($socket, ‘localhost’, ‘tcp’);

?>

This generates the error shown in Figure C.3. This error says that the second parameter is
supposed to be a long but a string was given. But the second parameter is perfectly legit-
imate. It is the third parameter that is incorrect. It should read:

socket_create($socket, ‘localhost’, SOL_TCP);

See what I mean when I say that the errors are somewhat vague? These errors are still fairly
easy to track down. Usually when you stare at the specified line of code for a moment, the
fix dawns on you. If the fix doesn’t come to you then go to www.php.net and type in the
function name in the search box. This will bring up the documentation for the particular
function so you can determine where you went wrong.

Figure C.3 A semantic error.

332 Appendix C ■ Support—Debugging Applications

Logic Errors
Of the three general categories of errors, logic errors are the hardest to track down. The
reason for this is because the code is syntactically correct and runs. The code just doesn’t
run as expected. The most frustrating part of logic errors is that the code you wrote may
look like it is working, but then something unexpected occurs later down the line. Take a
quick look at the following code example and see if you can spot the logic error.

<?php
$someArray = array(“Knife”, “Gun”, “Health”, “Shield”);
for($loop = 0; $loop < count($someArray); $loop++)
{

if($someArray[$loop] == “Health”)
{

unset($someArray[$loop]);
}
echo(“$loop = $someArray[$loop]
”);

}
?>

Did you spot the error? Take a look at Figure C.4 to see the output of this example and see
if you can figure out what is happening.

Notice how the output stops at the third element in the array. Shouldn’t the last line say
3 = Shield? The error in logic here is that you are iterating through the number of ele-
ments in the array. Once you hit the “Health” element you unset the index in the array.
This results in the count of the array being decreased by one. So when the loop starts the
next set should print out 3 = Shield. The index is now greater than the count of the array.

Figure C.4 A logic error.

Support—Debugging Applications 333

Notice that there are no errors on this page. As I mentioned, logic errors can be hard to
track down when something doesn’t work as expected.

There is actually a fourth category, environmental errors, but you have absolutely no con-
trol over these. An environmental error is when there is an inherent bug in the program
you are using. If you run into an untraceable error, chances are fairly high that it is an
environmental error. However, you can’t just chalk up hard-to-find logic errors as envi-
ronmental errors. If you believe you have run into an environmental error go to the Web
site and take a look at the forums and the known bug lists. If you find something related
to your problem, then there is most likely an easy fix for it. Usually the fix comes in the
form of an update or a configuration setting.

PHP and Error Reporting
PHP is capable of four levels of error reporting. PHP reports fatal errors, parser errors,
warnings, and notices. You can set your desired level of error reporting in the php.ini file
under the errors header. Or you may set the level of error reporting on the fly for your
application. To set the error reporting level on the fly you can use the following function:

int error_reporting(int level);

The error_reporting() function takes an integer of the level of reporting you would like.
Each of the four levels of errors has an integer value.

■ 1 – Fatal Errors

■ 2 – Warnings

■ 4 – Parser Errors

■ 8 – Notices

So to figure out the level of error reporting you would like, you simply add the values
together. This is much like the permissions on a UNIX machine. For example, if you
would like to report only fatal errors and warnings you would do the following:

error_reporting(3);

See how that works? Take a look at one more. Let’s say you wanted to report only notices,
warnings, and fatal errors. You would use the following line:

error_reporting(11);

By the same token, if you supplied 0 as the value for the level then no errors would be
reported. This is a handy function to use. While you are developing an application you can
turn on your errors so you can debug problems. But when you put something into pro-
duction you could simply set the error reporting level to 0 and have no fear that a user will
see a big nasty error in the middle of a page.

334 Appendix C ■ Support—Debugging Applications

Handling Errors
Handling errors in PHP is fairly straightforward. Most of the time a function will return
0 if it fails for one reason or another, so to catch this you can always use an if statement.

<?php
if(!someFunction($value))
{

echo(“An error has occurred”);
return;

}
?>

This allows you to do whatever you want when an error occurs. You could just let users
know something has gone wrong, or you could even go as far as to take them to a detailed
error page that allows them to e-mail the administrator with a notification of the error.

However, there are some functions that will generate an error if they fail. If this is the case
you can suppress the error by using the at (@) symbol.

<?php

if(!@mysql_connect($db, $username, $password))

{

echo(“An error has occurred while trying to open the database”);
return;

}
?>

This will suppress the PHP error message but the function will still return 0, letting you
know that it has failed. Be aware that if you suppress a fatal error no message will be dis-
played but processing of the script will halt dead in its tracks. So I recommend running
your code without the suppression when testing to see where errors occur and adding the
suppression in when you are finished debugging your code.

If you suppress error messages you can always retrieve the full error message through the
$php_errormsg variable. This variable will always contain the last error that occurred in the
PHP interpreter.

When writing this book I ran into an error that occurred when trying to write to a db file
that I created and I had errors turned off. So every time I executed the script nothing would
show up on the screen and no file was ever created. It took me a few minutes to realize what
was going on. When I finally did, I got an error message that looked like Figure C.5.

I first thought to myself, “What the hell is that; it makes no sense at all.” Even though this
error was quite cryptic, it gave me a direction. Since it was having a problem with the
dba_open() line, I thought I must not have included the db extensions. When I checked the

Support—Debugging Applications 335

Figure C.5 Error message.

php.ini file I discovered I had included the db extensions. Then, after several hours of
searching the forums, I ran the phpinfo() function. When I did this I discovered that the
version of PHP that I was running did not support the db2 format, but it did support the
db3 format. Once I made this simple change everything worked perfectly. It just goes to
show that using those errors may not lead you to an immediate fix but it will at least point
you in the right direction.

Application and Installation Problems
While installing PHP or one of the other applications included on the CD you may run
into some configuration or setup issues. I can’t cover all the issues in this book, but I can
recommend just going to the manufacturer’s Web site and looking at their documenta-
tion. These companies have done a great job of detailing very common problems that
occur during installation and setup. If your problem is not in the available documenta-
tion, there is always customer support.

The one thing that I am going to include in this book is the set of frequently asked ques-
tions listed on www.php.net. I imagine these will be the most common problems you will
run into and I want to save you the time of trying to find these answers all on your own.

1. I got the latest version of PHP using the anonymous CVS service, but there’s no
configure script!

You must have the GNU autoconf package installed so you can generate the
configure script from configure.in. Just run ./buildconf in the top-level directory
after getting the sources from the CVS server. (Also, unless you run configure with
the --enable-maintainer-mode option, the configure script will not automatically get

336 Appendix C ■ Support—Debugging Applications

rebuilt when the configure.in file is updated, so you should make sure to do that
manually when you notice configure.in has changed. One symptom of this is finding
things like @VARIABLE@ in your Makefile after configure or config.status is run.)

2. I’m having problems configuring PHP to work with Apache. It says it can’t find
httpd.h, but it’s right where I said it is!

You need to tell the configure/setup script the location of the top level of your
Apache source tree. This means that you want to specify --with-apache=/
path/to/apache and not --with-apache=/path/to/apache/src.

3. While configuring PHP, you come across an error similar to the following:

checking lex output file root... ./configure: lex: command not found

configure: error: cannot find output from lex; giving up

Be sure to read the installation instructions carefully and note that you need

both Flex and Bison installed to compile PHP. Depending on your setup, you

will install Bison and Flex from either source or a package, such as an RPM.

4. When I try to start Apache, I get the the following message:

fatal: relocation error: file /path/to/libphp4.so:

symbol ap_block_alarms: referenced symbol not found

This error usually comes up when you compile the Apache core program as a DSO
library for shared usage. Try to reconfigure Apache, making sure to use at least the
following flags:

—enable-shared=max —enable-rule=SHARED_CORE

For more information, read the top-level Apache install file.

5. When I run configure, it says that it can’t find the include files or library for GD,
gdbm, or some other package!

You can make the configure script look for header files and libraries in non-stan-
dard locations by specifying additional flags to pass to the C preprocessor and
linker, such as:

CPPFLAGS=-I/path/to/include LDFLAGS=-L/path/to/library ./configure

If you’re using a csh-variant for your login shell (why?), it would be:

env CPPFLAGS=-I/path/to/include LDFLAGS=-L/path/to/library ./configure

6. When it is compiling the file language-parser.tab.c, it gives me errors that say
yytname undeclared.

You need to update your version of Bison. You can find the latest version at

www.gnu.org/software/bison/bison.html.

Support—Debugging Applications 337

7. When I run make, it seems to run fine but then fails when it tries to link the
final application, complaining that it can’t find some files.

Some old versions of make don’t correctly put the compiled versions of the files in
the functions directory into that same directory. Try running cp *.o functions and
then re-running make to see if that helps. If it does, you should really upgrade to a
recent version of GNU make.

8. When linking PHP, it complains about a number of undefined references.

Take a look at the link line and make sure that all of the appropriate libraries are
being included at the end. Common ones that you might have missed are ‘-ldl’ and
any libraries required for any database support you included.

If you’re linking with Apache 1.2.x, did you remember to add the appropriate
information to the EXTRA_LIBS line of the configuration file and re-rerun
Apache’s configure script? See the install file that comes with the distribution for
more information.

Some people have also reported that they had to add ‘-ldl’ immediately following
libphp4.a when linking with Apache.

9. I can’t figure out how to build PHP with Apache 1.3.

This is actually quite easy. Follow these steps carefully:

1. Grab the latest Apache 1.3 distribution from www.apache.org/dist/httpd/.

2. Ungzip and untar it somewhere, for example /usr/local/src/apache-1.3.

3. Compile PHP by first running ./configure --with-apache=/<path>/apache-1.3
(substitute <path> with the actual path to your Apache-1.3 directory).

4. Type make followed by make install to build PHP and copy the necessary files to
the Apache distribution tree.

5. Change directories into to your /<path>/apache-1.3/src directory and edit the
configuration file. Add to the file: AddModule modules/php4/libphp4.a.

6. Type: ./configure followed by make. You should now have a PHP-enabled httpd
binary!

N o t e

You can also use the new Apache ./configure script. See the instructions in the README.configure
file, which is part of your Apache distribution. Also have a look at the install file in the PHP distrib-
ution.

10. I have followed all the steps to install the Apache module version on UNIX, and
my PHP scripts show up in my browser or I am being asked to save the file.

This means that the PHP module is not getting invoked for some reason. Three
things to check before asking for further help:

338 Appendix C ■ Support—Debugging Applications

Make sure that the httpd binary you are running is the actual new httpd binary

you just built. To do this, try running: /path/to/binary/httpd -l .

If you don’t see mod_php4.c listed then you are not running the right binary. Find

and install the correct binary.

1. Make sure you have added the correct Mime Type to one of your Apache .conf

files. It should be: AddType application/x-httpd-php3 .php3 (for PHP 3) or AddType

application/x-httpd-php .php (for PHP 4)

2. Also make sure that this AddType line is not hidden away inside a <Virtualhost> or
<Directory> block which would prevent it from applying to the location of your
test script.

3. Finally, the default location of the Apache configuration files changed between
Apache 1.2 and Apache 1.3. You should check to make sure that the configura-
tion file you are adding the AddType line to is actually being read. You can put an
obvious syntax error into your httpd.conf file or some other obvious change that
will tell you if the file is being read correctly.

11. It says to use --activate-module=src/modules/php4/libphp4.a, but that file does-
n’t exist, so I changed it to --activate-module=src/modules/php4/libmodphp4.a
and it doesn’t work!? What’s going on?

Note that the libphp4.a file is not supposed to exist. The Apache process will
create it!

12. When I try to build Apache with PHP as a static module using --activate-
module=src/modules/php4/libphp4.a it tells me that my compiler is not ANSI-
compliant.

This is a misleading error message from Apache that has been fixed in more recent
versions.

13. When I try to build PHP using --with-apxs I get strange error messages.

There are three things to check here. First, for some reason when Apache builds
the apxs Perl script, it sometimes ends up getting built without the proper com-
piler and flags variables. Find your apxs script (try the command which apxs). It’s
sometimes found in /usr/local/apache/bin/apxs or /usr/sbin/apxs. Open it and
check for lines similar to these:

my $CFG_CFLAGS_SHLIB = ‘ ‘;

my $CFG_LD_SHLIB = ‘ ‘;

my $CFG_LDFLAGS_SHLIB = ‘ ‘;

substituted via Makefile.tmpl
substituted via Makefile.tmpl
substituted via Makefile.tmpl

If this is what you see, you have found your problem. They may contain just spaces
or other incorrect values, such as ‘q()’. Change these lines to say:

Support—Debugging Applications 339

my $CFG_CFLAGS_SHLIB = ‘-fpic -DSHARED_MODULE’; # substituted via Makefile.tmpl
my $CFG_LD_SHLIB = ‘gcc’; # substituted via Makefile.tmpl
my $CFG_LDFLAGS_SHLIB = q(-shared); # substituted via Makefile.tmpl

The second possible problem should only be an issue on Red Hat 6.1 and 6.2. The
apxs script Red Hat ships is broken. Look for this line:

my $CFG_LIBEXECDIR = ‘modules’; # substituted via APACI install

If you see the above line, change it to this:

my $CFG_LIBEXECDIR = ‘/usr/lib/apache’; # substituted via APACI install

Last, if you reconfigure/reinstall Apache, add a make clean to the process after
./configure and before make.

14. During make, I get errors in microtime, and a lot of RUSAGE_ stuff.

During the make portion of installation if you encounter problems that look
similar to this:

microtime.c: In function `php_if_getrusage’:

microtime.c:94: storage size of `usg’ isn’t known

microtime.c:97: `RUSAGE_SELF’ undeclared (first use in this function)

microtime.c:97: (Each undeclared identifier is reported only once

microtime.c:97: for each function it appears in.)

microtime.c:103: `RUSAGE_CHILDREN’ undeclared (first use in this function)

make[3]: *** [microtime.lo] Error 1

make[3]: Leaving directory `/home/master/php-4.0.1/ext/standard’

make[2]: *** [all-recursive] Error 1

make[2]: Leaving directory `/home/master/php-4.0.1/ext/standard’

make[1]: *** [all-recursive] Error 1

make[1]: Leaving directory `/home/master/php-4.0.1/ext’

make: *** [all-recursive] Error 1

then your system is broken. You need to fix your /usr/include files by installing a
glibc-devel package that matches your glibc. This has absolutely nothing to do with
PHP. To prove this to yourself, try this simple test:

$ cat >test.c <<X

#include <sys/resource.h>

$ gcc -E test.c >/dev/null

If that spews out errors, you know your include files are messed up.

X

340 Appendix C ■ Support—Debugging Applications

15. When compiling PHP with MySQL, configure runs fine but during make I get an
error similar to the following: ext/mysql/libmysql/my_tempnam.o(.text+0x46):
In function my_tempnam’: /php4/ext/mysql/libmysql/my_tempnam.c:103: The
use of tempnam’ is dangerous, better use mkstemp’, what’s wrong?

First, it’s important to realize that this is a warning and not a fatal error. Because
this is often the last output seen during make it may seem like a fatal error, but it’s
not. Of course, if you set your compiler to die on Warnings, it will. Also keep in
mind that MySQL support is enabled by default.

N o t e

As of PHP 4.3.2, you’ll also see the following text after the build (make) completes:

Build complete (it is safe to ignore warnings about tempnam and tmpnam).

16. I want to upgrade my PHP. Where can I find the ./configure line that was used to
build my current PHP installation?

Either you look at config.nice file, in the source tree of your current PHP installa-
tion, or, if this is not available, you simply run the php_info() function. On the top
of the output the ./configure line that was used to build this PHP installation is
shown.

17. When building PHP with the GD library it either gives strange compile errors or
segfaults on execution.

Make sure your GD library and PHP are linked against the same depending
libraries (e.g., libpng).

That is the complete Frequently Asked Questions section from www.php.net. Now you
don’t have to fumble around on the Internet. You can just go straight to this appendix to
find most of your configuration and installation answers.

appendix D

GD SDK Language
Reference

This appendix is the language reference for Boutell’s GD graphics library. Each
function is listed with the parameters it receives, what the function returns, and a
short description of what the function does.

GD Functions
Function Returns Description

GetImageSize(filename, [image_info) Array

Image2wbmp(image, [filename], [threshold]) Integer

ImageAlphaBlending(image, blendmode) Integer

ImageArc(image, cx, cy, width, height, Integer
start, end, col)

ImageChar(image, font, x, y, c, col) Integer

ImageCharUp(image, font, x, y, c, col) Integer

ImageColorAllocate(img, red, green, blue) Integer

ImageColorAt(img, x, y) Integer

ImageColorClosest(img, red, green, blue) Integer

ImageColorClosestAlpha(image, red, Integer
green, blue, alpha)

ImageColorClosestHwb(image, red, green, blue) Integer

Gets the size of the image.

Saves the image as a WBMP.

Switches alpha blending on or off by setting

blendmode to true or false, respectively.

Draws a partial ellipse in the specified image.

The center point of the arc is at cx, cy.

Draws a character horizontally on the specified

image.

Draws a character vertically on the specified image.

Allocates the specified RGB color value for the

image.

Returns the index of the color at x, y.

Returns the index to the closest color in the color

palette for the image.

Returns the index of the closest color to the

specified color plus the alpha palette for the

specified image.

Returns the index of the color with the hue, white,

and blackness closest to the RGB value specified.

341

342 Appendix D ■ GD SDK Language Reference

Function Returns Description

ImageColorDeallocate(image, index)

ImageColorExact(img, red, green, blue)

ImageColorExactAlpha(image, red, green,
blue, alpha)

ImageColorResolve(img, red, green, blue)

ImageColorResolveAlpha(img, red, green,
blue, alpha)

ImageColorSet(img, index, red, green, blue)

ImageColorsForIndex(img, index)

ImageColorsTotal(img)

ImageTrueColorToPalette(image, dither, colors)

ImageColorTransparent(img, [color])

ImageCopy(dest_image, src_image, dest_x,
dest_y, src_x, src_y, src_w, src_h)

ImageCopyMerge(dest_image, src_image, dest_x,
dest_y, src_x, src_y, src_w, src_h, pct)

ImageCopyMergeGray(dest_image, src_image,
dest_x, dest_y, src_x, src_y, src_w, src_h,
pct)

ImageCopyResampled(dest_image, src_image,
dest_x, dest_y, src_x, src_y, dest_w,
dest_h, src_w, src_h)

ImageCopyResized(dest_img, src_img, destX,
destY, srcX, srcY, destWidth, destHeight,
srcWidth, srcHeight)

ImageCreate(width, height)

ImageCreateFromGif(filename)

ImageCreateFromJpeg(filename)

ImageCreateFromPng(filename)

ImageCreateFromString(string)

ImageCreateFromWbmp(filename)

ImageCreateFromXbm(filename)

ImageCreateFromXpm(filename)

ImageCreateTrueColor(width, height)

ImageDashedLine(img, x1, y1, x2, y2, color)

Integer

Integer

Integer

Integer

Integer

Boolean

Array

Integer

void

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Deallocates a color in the specified image.

Returns the index of the specified color in the color

palette of the image.

Returns the index of the specified color in the color

palette plus the alpha channel for the image.

Finds the specified color in the palette. If it doesn’t

exist, it returns the index to the closest color in the

palette.

Finds the specified color in the palette. If it doesn’t

exist, it returns the index to the closest color in the

palette plus the images alpha channel.

Sets the specified index to the RGB color value.

Returns an array containing the RGB values for the

specified index in the color palette.

Returns the number of colors in the specified images

color palette.

Converts a true-color image into a palletized image.

Sets the transparent color in the palette.

Copies an area from the source image to the

destination image.

Copies an area from the source image to the

destination image. The amount of the merge is

specified by the value pct (0–100).

Works exactly like ImageCopyMerge() but the

area being copied is first converted to grayscale.

Copies and resamples the area from the source

image.

Copies an area from the source image to an array

of the destination image. If the heights are different

then the destination image is resized.

Creates a new image.

Creates a new image from the specified file.

Creates a new image from the specified file.

Creates a new image from the specified file.

Creates a new image from the data in the string.

Creates a new image from the file.

Creates a new image from the file.

Creates a new image from the file.

Creates a new true color image of width by height.

Draws a dashed line in the image from point x1, y1

to point x2, y2.

GD SDK Language Reference 343

Function Returns Description

ImageDestroy(img)

ImageEllipse(image, x, y, width, height,

color)

ImageFill(img, x, y, color)

ImageFilledArc(image, x, y, width, height,

start, end, color, style)

ImageFilledEllipse(image, x, y, width,

height, color)

ImageFilledPolygon(img, points, num_points,

color)

ImageFilledRectangle(img, x1, y1, x2, y2,

color)

ImageFillToBorder(img, x, y, border, color)

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Destroys the specified image.

Draws an ellipse with the center point at x, y.

Fills the image starting at point x, y.

Draws a filled-in arc centered at point x, y.

Draws a filled ellipse in the image with its center

point at x, y.

Draws a filled polygon in the image between the

points.

Draws a filled rectangle in the specified image.

Performs a flood-fill between the specified border

color starting at point x, y.

Returns the height of the specified font in pixels.

Returns the width of the specified font in pixels.

Corrects the gamma to the specified image.

Sends the image to a file or to the browser.

Turns interlacing on or off in the image.

Sends the image to a file or to the browser.

Draws a line in the image from point x1, y1 to

point x2, y2.

Sends the image to a file or to the browser.

Draws a pixel at point x, y in the specified color.

Draws a polygon in the image, much like polygon

fill except it doesn’t fill the image.

Draws a rectangle to the image. Acts much like

ImageRectangleFill() but the rectangle is not filled

when it is drawn.

Draws a string starting at x, y to the image.

Draws the text starting at point x, y in the specified

TrueType font.

Draws the text starting at point x, y in the specified

TrueType font.

Creates a WBMP file from the specified image.

ImageFontHeight(font)

ImageFontWidth(font)

ImageGammaCorrect(image,inputgamma,

outputgamma)

ImageGif(img, [filename])

ImageInterlace(img, [interlace])

ImageJpeg(image, [filename], [quality])

ImageLine(img, x1, y1, x2, y2, color)

ImagePng(image, [filename])

ImageSetPixel(image, x, y, color)

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

ImagePolygon(img, points, num_points, color) Integer

ImageRectangle(img, x1, y1, x2, y2, color) Integer

ImageString(img, font, x, y, string, color) Integer

ImageTTFString(image, size, angle, x, y, Array
color, fontfile, text)

ImageTTFText(image, size, angle, x, y, Array
color, fontfile, text)

ImageWbmp(image, [filename], [foreground]) Integer

INDEX

A B
ActionScript background

Flash movies, 275-278 Battle Tank, 196, 205-208
Ming, 258 Flash movies, 260

add() function, 263 Battle Tank
addEntry() function, 267-268 background, 196, 205-208
addFill() function, 265-270 bullets, 198-199, 204
algorithms, TCP/IP, 14 coordinates, 205-208
animating Flash movies, 271-275 CSS, 196-197
Apache servers, installing, 18-21 globals, 198-199
arcs, drawing, 174-178 gravity, 198-199, 204
arguments, padding, 64-65 images, 195-198, 201, 205-208
arithmetic operators, 78 integrating sockets, 224-228
array() function, 105 interface, 197-198
arrays loops, 201-205

Chess game board, 140-141 menu, 199-200
declaring, 104-105 overview, 193-195
for statements, 106-108 states, 194-195, 198-199
indexes, 104-106 tables, 197-198
initializing, 104-105 tanks, 196-197
looping, 106-110 variables, 199-200, 204
multi-dimensional, 110-112 binary operators, 79-80
overview, 103-104 binding sockets, 215-216
sorting, 112-117 bitmaps, Flash movies, 269-270
strings, 105-106 bits. See operators
tic-tac-toe, 117-132 bitwise operators, 82-85
while statements, 108-110 blocks, code, 56

arsort() function, 115 boards
asort() function, 115 Chess, 140-141
assigning color, images, 161-162 printing, 111-112
assignment shortcuts, variables, 85-86 <BODY> HTML tag, 33-36

Boolean data type, 57

 HTML tag, 36

C

Index 345

browsers. See clients

bullets, Battle Tank, 198-199, 204

CAddWeaponsCmd() class, 245-248

Cartesian system. See coordinates

case sensitivity, variables, 57

CCommand() class, 235-240

CCreateAccountCmd() class, 240-245

CGame() class, 235, 251-255

CheckFull() function, 126-128

CheckWin() function, 126-128

Chess game

database, 140-155

defining globals, 141-142

DrawBoard() function, 147-155

GetSquare() function, 153

move history, 154-155

MovePiece() function, 147

pieces, 143-151

ProcessInput() function, 151-155

PutPiece() function, 147

render() function, 143-151

StartBoard() function, 147

states, 141-142

TakePiece() function, 147

UpdateMoveList() function, 153-154

user input, 151-155

classes. See also functions
CAddWeaponsCmd(), 245-248

CCommand(), 235-240

CCreateAccountCmd(), 240-245

CGame(), 235, 251-255

CLockTableCmd(), 243

CommandFactory(), 248-255

CRenderCmd(), 243-244

CUnlockTableCmd(), 243

CVerifyAccountInfoCmd(), 243

Ming, 258-259

SWFAction(), 276-278

SWFBitmap(), 269-270

SWFDisplayItem(), 271-275

SWFFill(), 265-270

SWFGradient(), 267-268

SWFMorph(), 273-275

SWFMovie(), 259-261

SWFShape(), 262, 269-270

clients
creating, 223-224

pages, interpreting, 4

server relationship, 3-5

sockets, 213

CLockTableCmd() class, 243

code blocks, 56

color

Flash movies, 260

images, 166

assigning, 161-162

converting, 165

filling, 162-163

number, 165-166

overview, 161

transparency. See transparency

command factory, creating, 248-255

command line, running scripts, 220

CommandFactory() class, 248-255

commands

command line, running scripts, 220

creating

command factory, 248-255

Kiddy Cartel, 234-255

sub-commands, 240-245

su, 26

tables, 243

comparison operators, 78-79

ComputerMove() function, 128-131

ComputerRandomMove() function, 128-131

concatenating operators, 81

conditional logic. See statements

connecting

Kiddy Cartel database, 232

servers, 220-223

constants
defining, 118

overview, 58-59

converting color, 165

cookies, passing, 6

coordinates

Battle Tank, 205-208

images, drawing, 167

copying images, 185-191

count() function, 107

CREATE TABLE function, 231-232

346 Index

creating
clients, 223-224

commands

command factory, 248-255

Kiddy Cartel, 234-255

sub-commands, 240-245

databases, 134-136

directories, 117

error messages, 95-98

Flash movies, 259-261

images, 160-161

pages, 56

servers, 220-223

sockets, 215

tables, 231-232

CRenderCmd() class, 243-244

CSS, Battle Tank, 196-197

CUnlockTableCmd() class, 243

current() function, 109-110

CVerifyAccountInfoCmd() class, 243

D
data types

arrays

Chess game board, 140-141

declaring, 104-105

for statements, 106-108

indexes, 104-106

initializing, 104-105

looping, 106-110

multi-dimensional, 110-112

overview, 103-104

sorting, 112-117

strings, 105-106

tic-tac-toe, 117-132

while statements, 108-110

Boolean, 57

declaring, 57

Flash movies, 275-278

strings

array indexes, 105-106

formatting numbers, 65

functions, 61-65

operators. See operators

padding arguments, 64-65

pattern matching, 66-71

type casting, 58

type juggling, 57-58

variables

Battle Tank, 199-200, 204

case sensitivity, 57

constants, 58-59

declaring, 57

dynamic values, 58

functions, 60-61

naming, 59-60

operators. See operators
session variables, 5-13

shortcut operators, 85-86

type casting, 58

type juggling, 57-58

variable, 58

database abstraction (DBA), 134

databases

Chess game, 140-155

connecting, 232

creating, 134-136

DBA, 134

entries

deleting, 140

inserting, 137-139

updating, 139-140

Kiddy Cartel, 231-232

looping, 136-137

MySQL

installing, 230-231

PEAR, 229

non-relational, 134

object oriented, 133

opening, 134-136

overview, 133-134

relational, 133, 231-233

DBA (database abstraction), 134

dba_close() function, 140

dba_delete() function, 140

dba_fetch() function, 136-137

dba_firstkey() function, 136-137

dba_insert() function, 137-139

dba_open() function, 134-136

dba_replace() function, 139

dba_sync() function, 139-140

debugging

games, 155

installing, 29-30

semicolons, 56

Index 347

server states, 5

declaring

arrays, 104-105

data types, 57

functions, 95

variables, 57

define() function, 59

defined() function, 59

defining

constants, 118

globals

Battle Tank, 198-199

Chess game, 141-142

tic-tac-toe, 118

DELETE FROM function, 233

deleting

database entries, 140

records, 233

delimiters, selecting, 56

directories, creating, 117

<DIV> HTML tag, 197

dl() function, 159

do statements, 93-94

documents. See files

DrawBoard() function

Chess game, 147-155

tic-tac-toe, 125-126

drawCurve() function, 263, 264

drawCurveTo() function, 264-265

drawing. See also images

Flash movies, 262-265

images, 167

arcs, 174-178

coordinates, 167

ellipses, 174-178

lines, 167-169

pixels, 167-169

polygons, 172-174

rectangles, 169-172

drawLine() function, 262-263

drawLineTo() function, 262-263

dynamic values, variables, 58

E
each() function, 108-110

ellipses, drawing, 174-178

else statements, 88-90

empty() function, 61

enabling sockets, 219

EndGame() function, 124-125, 199-200

entries, databases

deleting, 140

inserting, 137-139

updating, 139-140

ereg() function, 69-70

ereg_replace() function, 70

eregi() function, 70

eregi_replace() function, 70

error messages, creating, 95-98

Execute() function, 239, 243-248

expressions

functions, 69-71

pattern matching, 66-69

F
files

HTML

formats, 37-38

overview, 32-33

including, 99

make, 24

filling
color, images, 162-163

objects, Flash movies, 265-270

Flash
Ming

ActionScript, 258

classes, 258-259

installing, 258

overview, 257-259

movies

ActionScript, 275-278

animating, 271-275

background color, 260

bitmaps, 269-270

creating, 259-261

data types, 275-278

drawing, 262-265

filling objects, 265-270

images, 262-265

morphing, 273-275

printing, 260

size, 259-261

speed, 260

348 Index

fopen() function, 269-270

for statements. See loops

<FORM> HTML tag, 48-51

formatting

numbers, strings, 65

text, HTML tags, 35

forms
HTML, 48-51

processing, 71-75

fread() function, 269-270

functions. See also classes

add(), 263

addEntry(), 267-268

addFill(), 265-270

array(), 105

arrays, sorting, 112-117

arsort(), 115

asort(), 115

CheckFull(), 126-128

CheckWin(), 126-128

ComputerMove(), 128-131

ComputerRandomMove(), 128-131

count(), 107

CREATE TABLE, 231-232

current(), 109-110

dba_close(), 140

dba_delete(), 140

dba_fetch(), 136-137

dba_firstkey(), 136-137

dba_insert(), 137-139

dba_open(), 134-136

dba_replace(), 139

dba_sync(), 139-140

declaring, 95

define(), 59

defined(), 59

DELETE FROM, 233

dl(), 159

DrawBoard()

Chess game, 147-155

tic-tac-toe, 125-126

drawCurve(), 263-264

drawCurveTo(), 264-265

drawLine(), 262-263

drawLineTo(), 262-263

each(), 108-110

empty(), 61

EndGame(), 124-125, 199-200

ereg(), 69-70

ereg_replace(), 70

eregi(), 70

eregi_replace(), 70

Execute(), 239, 243-248

fopen(), 269-270

fread(), 269-270

GameInit(), 200-201, 206-207

getShape1(), 273-275

getShape2(), 273-275

GetSquare(), 153

gettype(), 60

HandleSubCommand(), 239

ImageArc(), 174-178

ImageColorAllocate(), 161-162

ImageColorAt(), 166

ImageColorSet(), 166

ImageColorsTotal(), 165-166

ImageColorTransparent(), 163-165

ImageCopy(), 186-187

ImageCopyMerge(), 189-191

ImageCopyResampled(), 188-189

ImageCopyResized(), 188-189

ImageCreate(), 160-161

ImageCreateFromJpeg(), 185

ImageCreateFromPng(), 185

ImageCreateTrueColor(), 160-161

ImageFill(), 162-163

ImageFilledArc(), 176-178

ImageFilledPolygon(), 174, 207-208

ImageFilledRectangle(), 171-172

ImageLine(), 168-169

ImagePolygon(), 172-174

ImageRectangle(), 169-172

ImageSetPixel(), 167-169

ImageString(), 179-180

ImageTrueColorToPalette(), 165

ImageTTFBox(), 182-184

ImageTTFText(), 180-183

ImageWbmp(), 184-185

include(), 99

ini_set(), 7-13

INSERT INTO, 233

is_datatype(), 61

isset(), 60

key(), 109-110

krsort(), 116

ksort(), 115

Index 349

list(), 108-110

move(), 271-275

movePenTo(), 262-263

MovePiece(), 147

moveTo(), 271-275

MyFilledPolygon(), 174

MyFilledRectangle(), 171-172

MyPolygon(), 173-174

MyRectangle(), 170

MyTTFBox(), 183-184

next(), 109-110

nextFrame(), 272-273

number_format(), 65

OnError(), 239

OnRollBack(), 239-248

output(), 260

overview, 94-95

parameters, 95-98

phpinfo(), 159, 219

prev(), 109-110

printf(), 64-65

ProcessInput(), 151-155

PutPiece(), 147

Query(), 248

recursion, 98-99

regular expressions, 69-71

render()

Chess game, 143-151

tic-tac-toe, 119-123

Render(), 201-205, 225-228

RenderInterface(), 197-198

RenderTanks(), 196-197

RenderTerrain(), 196

reset(), 108-110

rotate(), 271-275

rsort(), 115

serialize(), 137-139

sessions, 10-13

setBackground(), 260

setDimension(), 259-261

setLeftFill(), 265-270

setLine(), 262-265

setRate(), 260

setRightFill(), 265-270

settype(), 60

socket_bind(), 215-216

socket_create(), 215

socket_listen(), 215-216

sockets, 216-219

sort(), 113-114

split(), 71

sprintf(), 64-65

StartBoard(), 147

StartGame(), 124-125, 199-200

strings, 61-65

TakePiece(), 147

tic-tac-toe, 123-131

unset(), 61

UPDATE, 233

UpdateMoveList(), 153-154

usort(), 116-117

variables, 60-61

G
GameInit() function, 200-201, 206-207

games

Battle Tank

background, 196, 205-208

bullets, 198-199, 204

coordinates, 205-208

CSS, 196-197

globals, 198-199

gravity, 198-199, 204

images, 195-198, 201, 205-208

integrating sockets, 224-228

interface, 197-198

loops, 201-205

menu, 199-200

overview, 193-195

states, 194-199

tables, 197-198

tanks, 196-197

variables, 199-200, 204

boards

Chess, 140-141

printing, 111-112

Chess

boards, 140-141

database, 140-155

defining globals, 141-142

DrawBoard() function, 147-155

GetSquare() function, 153

move history, 154-155

MovePiece() function, 147

pieces, 143-151

ProcessInput() function, 151-155

350 Index

games (continued)
PutPiece() function, 147

render() function, 143-151

StartBoard() function, 147

states, 141-142

TakePiece() function, 147

UpdateMoveList() function, 153-154

user input, 151-155

debugging, 155

Kiddy Cartel

command factory, 248-255

commands, 234-255

database, 231-232

overview, 229-230

rules, 233-235

specifications, 233-235

sub-commands, 240-245

tables, 233

MMO. See Kiddy Cartel
tic-tac-toe

arrays, 117-132

CheckFull() function, 126-128

CheckWin() function, 126-128

ComputerMove() function, 128-131

ComputerRandomMove() function, 128-131

defining constants, 118

defining globals, 118

directory, 117

DrawBoard() function, 125-126

EndGame() function, 124-125

functions, 123-131

HTML, 118-119

render() function, 119-123

StartGame() function, 124-125

states, 119

switch statement, 123

GD, 157-159

GemStone Web site, 133

GET method, 48, 71-75

getShape1() function, 273-275

getShape2() function, 273-275

GetSquare() function, 153

gettype() function, 60

gifs

HTML, 37-38

support, 157

globals
Battle Tank, 198-199

Chess game, 141-142

tic-tac-toe, 118

graphics. See images

gravity, 198-199, 204

H
HandleSubCommand() function, 239

<HEAD> HTML tag, 35

history, move, 154-155

HTML

documents, 32-33

forms, 48-51, 71-75

GET method, 48, 71-75

images, 36-41, 44-48

file formats, 37-38

size, 38

transparency, 37

layouts, 44-48

PHP

code blocks, 56

comparison, 55

POST method, 48, 71-75

tables, 41-48

tags

<BODY>, 33-36

, 36

<DIV>, 197

<FORM>, 48-51

<HEAD>, 35

<IFRAME>, 154-155

, 39-41

<INPUT>, 48-51

<SELECT>, 49-51

<TABLE>, 41-48

<TD>, 42-48

<TEXTAREA>, 49-51

<TITLE>, 35

<TR>, 42-48

overview, 31-32

printing, 56

text formatting, 35

tic-tac-toe, 118-119

I

if statements, 88-90

<IFRAME> HTML tag, 154-155

Index 351

IIS (Internet Information Server), 14
installing, 14-18

PWS comparison, 14-15

ImageArc() function, 174-178

ImageColorAllocate() function, 161-162

ImageColorAt() function, 166

ImageColorSet() function, 166

ImageColorsTotal() function, 165-166

ImageColorTransparent() function, 163-165

ImageCopy() function, 186-187

ImageCopyMerge() function, 189-191

ImageCopyResampled() function, 188-189

ImageCopyResized() function, 188-189

ImageCreate() function, 160-161

ImageCreateFromJpeg() function, 185

ImageCreateFromPng() function, 185

ImageCreateTrueColor() function, 160-161

ImageFill() function, 162-163

ImageFilledArc() function, 176-178

ImageFilledPolygon() function, 174, 207-208

ImageFilledRectangle() function, 171-172

ImageLine() function, 168-169

ImagePolygon() function, 172-174

ImageRectangle() function, 169-172

images. See also drawing

Battle Tank, 195-198, 201, 205-208

bullets, 198-199, 204

color, 166

assigning, 161-162

converting, 165

filling, 162-163

number, 165-166

overview, 161

copying, 185-191

creating, 160-161

drawing, 167

arcs, 174-178

coordinates, 167

ellipses, 174-178

lines, 167-169

pixels, 167-169

polygons, 172-174

rectangles, 169-172

Flash movies, 262-265

animating, 271-275

bitmaps, 269-270

filling objects, 265-270

morphing, 273-275

GD, 157-158

gifs

HTML, 37-38

support, 157

HTML, 36-48

file formats, 37-38

size, 38

transparency, 37

opacity, 189-191

saving, 184-185

size, 187-189

text, 179-184

translucency, 189-191

transparency, 163-165

ImageSetPixel() function, 167-169

ImageString() function, 179-180

ImageTrueColorToPalette() function, 165

ImageTTFBox() function, 182-184

ImageTTFText() function, 180-183

ImageWbmp() function, 184-185

 HTML tag, 39-41

include() function, 99

including files, 99

indexes, arrays, 104-106

ini_set() function, 7-13

initializing arrays, 104-105

input, users, 151-155

<INPUT> HTML tag, 48-51

INSERT INTO function, 233

inserting

database entries, 137-139

records, 233

installing
GD, 158-159

IIS, 14-18

Ming, 258

MySQL, 230-231

PWS, 14-18

servers

Apache, 18-21

IIS, 14-18

PWS, 14-18

UNIX, 19-21

testing, 29-30

UNIX, 24-26

Windows, 26-29

interfaces, Battle Tank, 197-198

Internet Information Server. See IIS

352 Index

interpreting pages, browsers, 4
is_datatype() function, 61
isset() function, 60

J
jpg files, HTML, 37-38

K
key() function, 109-110

keyword, PRIMARY KEY, 232

Kiddy Cartel

commands

command factory, 248-255

creating, 234-255

sub-commands, 240-245

database, 231-232

overview, 229-230

rules, 233-235

specifications, 233-235

tables, 233

krsort() function, 116

ksort() function, 115

L
layers, TCP/IP, 13-14

layouts, HTML, 44-48

libraries

GD, 157-159

Ming

ActionScript, 258

classes, 258-259

installing, 258

overview, 257-259

PEAR, 229

lines, drawing, 167-169

list() function, 108-110

listening sockets, 215-216

locking tables, 243

logic. See statements

logical operators, 79-80

looping

arrays, 106-110

Battle Tank, 201-205

databases, 136-137

printing game boards, 111-112

M
make files, 24

massively-multiplayer online game (MMOG). See

Kiddy Cartel

matching patterns

functions, 69-71

regular expressions, 66-69

math operators. See operators

menu, Battle Tank, 199-200

methods, 48-75

Ming

ActionScript, 258

classes, 258-259

installing, 258

overview, 257-259

MMO. See Kiddy Cartel

morphing Flash movies, 273-275

move() function, 271-275

move history, 154-155

movePenTo() function, 262-263

MovePiece() function, 147

moveTo() function, 271-275

movies, Flash

ActionScript, 275-278

animating, 271-275

background color, 260

bitmaps, 269-270

creating, 259-261

data types, 275-278

drawing, 262-265

filling objects, 265-270

images, 262-265

morphing, 273-275

printing, 260

size, 259-261

speed, 260

moving. See coordinates

multi-dimensional arrays, 110-112

MyFilledPolygon() function, 174

MyFilledRectangle() function, 171-172

MyPolygon() function, 173-174

MyRectangle() function, 170

MySQL

installing, 230-231

PEAR, 229

MyTTFBox() function, 183-184

Index 353

N
naming variables, 59-60

next() function, 109-110

nextFrame() function, 272-273

non-relational databases, 134

number_format() function, 65

numbers

formatting strings, 65

image colors, 165-166

O
object oriented databases, 133

objects, Flash movies, 265-270

ObjectStore Web site, 133

OnError() function, 239

OnRollBack() function, 239-248

opacity, images, 189-191

opening databases, 134-136

operators

arithmetic, 78

binary, 79-80

bitwise, 82-85

comparison, 78-79

concatenating, 81

logical, 79-80

overview, 77

precedence, 86-87

ternary, 80-81

variable assignment shortcuts, 85-86

output() function, 260

P
padding arguments, strings, 64-65

pages

browsers, interpreting, 4

creating, 56

parameters, passing, 95-98

passing

parameters, 95-98

sessions, 6-7

pattern matching, regular expressions, 66-69

PEAR (PHP Extension and Application

Repository), 229

Personal Web server (PWS)

IIS comparison, 14-15

installing, 14-18

PHP
code blocks, 56

HTML comparison, 55

pages

browsers, interpreting, 4

creating, 56

PHP Extension and Application Repository

(PEAR), 229

phpinfo() function, 159, 219

physics, velocity, 204

pieces, Chess game, 143-151

pixels, drawing, 167-169

placing. See coordinates

platforms overview, 23-24

png files, 37-38

polygons, drawing, 172-174

ports, servers, 5

POST method, 48, 71-75

precedence, operators, 86-87

prefixes, variables, 59-60

prev() function, 109-110

PRIMARY KEY keyword, 232

printf() function, 64-65

printing

Flash movies, 260

game boards, 111-112

HTML tags, 56

text, 56

processing forms, 71-75

ProcessInput() function, 151-155

protocols, sockets, 214-215

PutPiece() function, 147

PWS (Personal Web Server)

IIS comparison, 14-15

installing, 14-18

Q
Query() function, 248

R
records, 233

rectangles, drawing, 169-172

recursion, functions, 98-99

regular expressions

functions, 69-71

pattern matching, 66-69

354 Index

relational databases, 133

MySQL

installing, 230-231

PEAR, 229

overview, 231-233

render() function

Chess game, 143-151

tic-tac-toe, 119-123

Render() function, 201-205, 225-228

RenderInterface() function, 197-198

RenderTanks() function, 196-197

RenderTerrain() function, 196

reset() function, 108-110

rotate() function, 271-275

rsort() function, 115

rules, Kiddy Cartel, 233-235

running scripts, command line, 220

S
saving images, 184-185

scripts, command line, 220

security

sessions, passing, 6

tables, commands, 243

<SELECT> HTML tag, 49-51

selecting delimiters, 56

semicolons, troubleshooting, 56

serialize() function, 137-139

servers

client relationship, 3-5

creating, 220-223

debugging states, 5

installing

Apache, 18-21

IIS, 14-18

PWS, 14-18

UNIX, 19-21

multiple connections, 220-223

ports, 5

sockets, 213

session variables, states, 5-13

sessions

functions, 10-13

passing

cookies, 6

security, 6

URLs, 6-7

states, session variables, 5-13

setBackground() function, 260

setDimension() function, 259-261

setLeftFill() function, 265-270

setLine() function, 262-265

setRate() function, 260

setRightFill() function, 265-270

settype() function, 60

shortcuts, assignment operators, 85-86

size

Flash movies, 259-261

HTML, 38

images, 187-189

socket_bind() function, 215-216

socket_create() function, 215

socket_listen() function, 215-216

sockets

Battle Tank, integrating, 224-228

binding, 215-216

clients, 213, 223-224

creating, 215

enabling, 219

functions, 216-219

listening, 215-216

protocols, 214-215

servers, 213, 220-223

types, 214

sort() function, 113-114

sorting arrays, 112-117

specifications, Kiddy Cartel, 233-235

speed, Flash movies, 260

split() function, 71

sprintf() function, 64-65

SQL

MySQL

installing, 230-231

PEAR, 229

T-SQL, 231-233

StartBoard() function, 147

StartGame() function, 124-125, 199-200

statements

do, 93-94

else, 88-90

for, 94, 106-108

if, 88-90

overview, 86

switch, 90-93, 123

while, 93-94, 108-110

states
Battle Tank, 194-195, 198-199

Chess game, 141-142

servers, debugging, 5

session variables, 5-13

tic-tac-toe, 119

strings. See also text
array indexes, 105-106

formatting numbers, 65

functions, 61-65

operators. See operators

padding arguments, 64-65

pattern matching

functions, 69-71

regular expressions, 66-69

su command, 26

sub-commands, 240-245

support, gifs, 157

SWFAction() class, 276-278

SWFBitmap() class, 269-270

SWFDisplayItem() class, 271-275

SWFFill() class, 265-270

SWFGradient() class, 267-268

SWFMorph() class, 273-275

SWFMovie() class, 259-261

SWFShape() class, 262, 269-270

switch statements, 90-93, 123

T
<TABLE> HTML tag, 41-48

tables

Battle Tank, 197-198

creating, 231-232

HTML, 41-48

locking commands, 243

records, 233

security, 243

unlocking commands, 243

tags, HTML
<BODY>, 33-36

, 36

<DIV>, 197

<FORM>, 48-51

<HEAD>, 35

<IFRAME>, 154-155

, 39-41

<INPUT>, 48-51

Index 355

<SELECT>, 49-51

<TABLE>, 41-48

<TD>, 42-48

<TEXTAREA>, 49-51

<TITLE>, 35

<TR>, 42-48

overview, 31-32

printing, 56

text formatting, 35

TakePiece() function, 147

tanks, 196-197

TCP/IP (Transmission Control Protocol/Internet

Protocol), 13-14

<TD> HTML tag, 42-48

ternary operators, 80-81

terrain. See background

testing. See debugging

text. See also strings

formatting, 35

images, 179-184

printing, 56

<TEXTAREA> HTML tag, 49-51

tic-tac-toe

arrays, 117-132

CheckFull() function, 126-128

CheckWin() function, 126-128

ComputerMove() function, 128-131

ComputerRandomMove() function, 128-131

defining constants, 118

defining globals, 118

directory, 117

DrawBoard() function, 125-126

EndGame() function, 124-125

functions, 123-131

HTML, 118-119

render() function, 119-123

StartGame() function, 124-125

states, 119

switch statement, 123

<TITLE> HTML tag, 35

<TR> HTML tag, 42-48

translucency, 189-191

Transmission Control Protocol/Internet Protocol

(TCP/IP), 13-14

transparency

HTML, 37

images, 163-165

356 Index

troubleshooting. See debugging

T-SQL overview, 231-233

type casting, 58

type juggling, 57-58

types, sockets, 214

U
UNIX, 23

installing, 24-26

servers, 19-21

unlocking tables, 243

unset() function, 61

UPDATE function, 233

UpdateMoveList() function, 153-154

updating databases

entries, 139-140

records, 233

URLs, passing, 6-7

user input, Chess game, 151-155

usort() function, 116-117

V

values

dynamic, 58

operators

arithmetic, 78

binary, 79-80

bitwise, 82-85

comparison, 78-79

concatenating, 81

logical, 79-80

overview, 77

precedence, 86-87

ternary, 80-81

variable assignment shortcuts, 85-86

variable variables, 58

variables
Battle Tank, 199-200, 204

case sensitivity, 57

constants, 58-59

declaring, 57

dynamic values, 58

functions, 60-61

naming, 59-60

operators

arithmetic, 78

binary, 79-80

bitwise, 82-85

comparison, 78-79

concatenating, 81

logical, 79-80

overview, 77

precedence, 86-87

ternary, 80-81

variable assignment shortcuts, 85-86

session variables, 5-13

shortcut operators, 85-86

type casting, 58

type juggling, 57-58

variable, 58

velocity, 204

Versant Web site, 133

W-Z
Web

pages

browsers, interpreting, 4

creating, 56

servers. See servers
sites, 133

while statements, 93-94, 108-110

Windows, installing, 26-29

Professional ■ Trade ■ Reference

GOT GAME?

COMING SPRING 2004!

3D Game Programming Beginning OpenGL
All in One Game Programming

1-59200-136-X ■ $49.99 1-59200-369-9 ■ $29.99

The Dark Side 3D Game Engine J2ME
of Game Texturing Programming Game Programming

1-59200-350-8 ■ $39.99 1-59200-351-6 ■ $59.99 1-59200-118-1 ■ $59.99

Call 1.800.354.9706 to order
Order online at www.courseptr.com A division of Course Technology

™

Take Your
Game to the

X TREME!

Xtreme Games LLC was founded to help small game developers
around the world create and publish their games on the commercial
market. Xtreme Games helps younger developers break into the field
of game programming by insulating them from complex legal and
business issues. Xtreme Games has hundreds of developers around
the world. If you’re interested in becoming one of them, then visit us
at www.xgames3d.com.

www.xgames3d.com

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms and con-
ditions. If, upon reading the following license agreement and notice of limited warranty, you
cannot agree to the terms and conditions set forth, return the unused book with unopened
disc to the place where you purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the software
disc. You are licensed to copy the software onto a single computer for use by a single user
and to a backup disc. You may not reproduce, make copies, or distribute copies or rent or
lease the software in whole or in part, except with written permission of the copyright hold-
er(s). You may transfer the enclosed disc only together with this license, and only if you
destroy all other copies of the software and the transferee agrees to the terms of the
license. You may not decompile, reverse assemble, or reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Course PTR to be free of physical defects in materials
and workmanship for a period of sixty (60) days from end user’s purchase of the book/disc
combination. During the sixty-day term of the limited warranty, Course PTR will provide a
replacement disc upon the return of a defective disc.

Limited Liability:
The sole remedy for breach of this limited warranty shall consist entirely of replacement of
the defective disc. IN NO EVENT SHALL COURSE PTR OR THE AUTHOR BE LIABLE
FOR ANY other damages, including loss or corruption of data, changes in the functional
characteristics of the hardware or operating system, deleterious interaction with other soft-
ware, or any other special, incidental, or consequential DAMAGES that may arise, even if
COURSE PTR and/or the author has previously been notified that the possibility of such
damages exists.

Disclaimer of Warranties:
COURSE PTR and the author specifically disclaim any and all other warranties, either
express or implied, including warranties of merchantability, suitability to a particular task or
purpose, or freedom from errors. Some states do not allow for EXCLUSION of implied war-
ranties or limitation of incidental or consequential damages, so these limitations mIGHT not
apply to you.

Other:
This Agreement is governed by the laws of the State of Massachusetts without regard to
choice of law principles. The United Convention of Contracts for the International Sale of
Goods is specifically disclaimed. This Agreement constitutes the entire agreement between
you and Course PTR regarding use of the software.

	PHP Game Programming
	Cover

	CONTENTS
	Introduction
	Part I Introduction to the World of PHP
	Chapter 1 So What Is All This Server Stuff?
	Understanding the Client/Server Relationship
	The Web Server
	Sessions and Session Variables
	TCP/IP
	Installing the IIS Web Server
	Installation on Windows 2000/XP Professional
	Installation on Windows 98
	Installing the Apache Web Server on Windows ME/XP
	Installing the Apache Web Server on UNIX

	Chapter 2 Waging the Configuration War
	The Platforms
	Building and Installing PHP on UNIX
	Installation on Windows for IIS/Apache
	Installing the Windows Extensions
	Testing Your Installation

	Chapter 3 I Have Conquered the Server, Let Me at the Code!
	The Basics of the HTML Tag
	The Almighty HTML Document
	The HTML Body
	Graphics and HTML
	The File Formats
	Using the File Formats in Your Document
	Tables
	Layouts, Tables, and Graphics
	Creating Forms for Input
	Conclusion

	Part II Enter the Language
	Chapter 4 Say Hello to PHP
	Creating a PHP Page
	Data Types
	Type Casting
	Variable Variables
	Constants
	Naming Conventions
	Functions for Variables
	Functions for Strings
	printf() and sprintf()
	Regular Expressions and Pattern Matching
	Using the Regular Expression Functions
	Processing Forms with PHP
	Conclusion

	Chapter 5 Operators, Statements, and Functions
	Operators
	Arithmetic Operators
	Comparison Operators
	Logical Operators
	Ternary Operator
	Bitwise Operators
	Variable Assignment Shortcuts
	Operation Precedence
	Statements
	if Statements
	The switch Statement
	while and do¡�while Loops
	The for Loop
	Functions
	Passing Parameters to a Function
	Recursion
	The Magic of Including Files
	Conclusion

	Part III Arrays, Games, and Graphics
	Chapter 6 Arrays!
	Initializing Arrays
	Using Strings for Indexes
	Looping through Sequential Arrays
	Looping through Non-Sequential Arrays
	Multi-Dimensional Arrays
	Sorting Arrays
	Your First PHP Game
	Conclusion

	Chapter 7 Playing with Chess and Databases
	Non-Relational Databases
	Creating and Opening a Database
	Looping through the Database
	Inserting an Entry into Your Database
	Updating an Entry in Your Database
	Deleting an Entry from Your Database
	Chess Programming: A Quick Overview
	Starting the Chess Game
	Working with the Pieces
	Getting the User Input and Modifying the Database
	Conclusion

	Chapter 8 GD Graphics Overview
	What Is GD?
	Installing GD
	Creating and Using a New Image
	How to Use Colors
	Allocating Colors to an Image
	Filling the Image
	Setting Your Transparent Color
	Converting a True-Color Image to a Palette Image
	Counting Colors in an Image
	Retrieving a Color at a Point
	Drawing Basic Shapes on Your Empty Canvas
	Pixels and Lines
	From Lines to Rectangles
	From Rectangles to Polygons
	From Polygons to Arcs and Ellipses
	Creating Images with Text
	Saving Your Images
	Using Existing Images
	Conclusion

	Chapter 9 Creating Battle Tank and Using Dynamic Terrain
	Planning Battle Tank
	Creating the Graphics
	Creating the Game Logic
	Creating Dynamic Terrain
	Conclusion

	Part IV Extras and Final Projects
	Chapter 10 PHP and Sockets
	Socket Basics
	Creating a Server
	Creating the Client
	Integrating Sockets with Battle Tank
	Conclusion

	Chapter 11 Kiddy Cartel-Creating Your Own MMO
	Installing mySQL
	Relational Databases: A Quick Rundown
	Kiddy Cartel: The Rules and Specifications
	Creating Your Base Actions
	Creating a Command with Sub-Commands
	Creating a Command without Sub-Commands
	Look at All the Commands¡�Now What?
	Conclusion

	Chapter 12 Building Your PHP Skills
	PHP and Ming
	How to Create a Flash Movie
	Drawing to Your Flash Movie
	Filling Objects with Ming
	Adding Animation to Your Flash Movie
	Adding ActionScript to Your Flash Piece
	Conclusion

	Part V Appendixes
	Appendix A HTML Language Reference
	Appendix B PHP Language Reference
	Appendix C Support-Debugging Applications
	Syntax Errors
	Semantic Errors
	Logic Errors
	PHP and Error Reporting
	Handling Errors
	Application and Installation Problems

	Appendix D GD SDK Language Reference

	Index
	Team DDU

